
- 1 -

Abstract. Representations of activities dealing with the development or maintenance of software
are called software process models. Process models allow for communication, reasoning, guid-
ance, improvement, and automation. Two approaches for modeling processes and instantiating
and managing the process models, namely CoMo-Kit and MVP-E, are combined to build a more
powerful one. CoMo-Kit is based on AI/KE technology; it is a support tool system for general
complex design processes, and was not been developed specifically with software development
processes in mind. MVP-E is a process-sensitive software engineering environment for modeling
and analyzing software development processes, and guides software developers. Additionally, it
provides services to establish and run measurement programmes in software organizations.
Because both approaches were developed independently from one another, major integration
efforts had to be made to combine their both advantages. This article concentrates on the result-
ing language concepts, and their operationalization necessary for building automated process
support.

1 Introduction

Processes are present whenever information is created, transformed, or communicated. Although
we distinguish between different types of processes (e.g., business processes, decision processes,
and software development processes) these types share common properties. Understanding simi-
larities and differences between process types is a key factor for better process support. Process
support includes improved communication, detailed reasoning about process features, guiding
people when performing processes, improving both the process itself and its results, and automat-
ing process steps in order to gain deterministic process behavior [10, 36]. These purposes require
explicit process representations (i.e., process models).

Enriching Software Process Support by
Knowledge-based Techniques*

Barbara Dellen, Frank Maurer, Jürgen Münch, Martin Verlage+

Fachbereich Informatik, Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

{verlage, dellen, maurer, muench}@informatik.uni-kl.de

*This work is supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 501 “Development of
Large Systems with generic Methods”. See also the explanation in the appendix.
+ In alphabetical order.

- 2 -

The variety of existing process support systems, for example process-sensitive software engineer-
ing environments or workflow management systems, corresponds to the variety of process types.
In this article we focus on software development processes and software processes. A software
development process is a (sub-)set of the technical activities to build a software product. Mainte-
nance tasks are subsumed by this phrase. A software process includes all software development
processes and all organizational processes needed to drive the project (e.g., management pro-
cesses). The addition ‘software’ may be omitted in this article for the sake of brevity. Interpreta-
tion of development process models, performed by a process engine, is called enactment to
emphasize the necessity of user participation for process performance [15]. A process engine
commonly is part of a so-called process-sensitive or process-centered software engineering
environment [17].

Process-sensitive software engineering environments use process models to provide sophisticated
support for both software developers and organizational roles [17]. Enaction updates a repre-
sented of the process state in order to reflect the real-world processes accurately. This works quite
well if the process behaves as planned. Nevertheless, from time to time events may occur which
had not been considered when modeling the process. The real-world process and its model do not
match any longer. Process engines should provide mechanisms for replanning a project under
enaction. This addresses the problem of process evolution [27]. Without these features such an
environment is not applicable in real-world projects. Unfortunately, only limited solutions do
exist.1

Providing such a powerful process-sensitive software engineering environment is a major goal of
our research work. Two already existing approaches from knowledge engineering and software
engineering domains are synthesized. The Conceptual Model Construction Kit (CoMo-Kit) was
developed for supporting complex design processes (e.g., city planning). The Multi-View Process
Environment (MVP-E) supports the modeling and analyzing of software development processes,
and guides software developers. Additionally it provides services to establish and run measure-
ment programmes in software organizations. Both research prototypes were developed indepen-
dently from one another. Suitability of both approaches to real problems was
demonstrated [22,31]. By studying the approaches, relating their underlying assumptions, and
synthesizing them we gain a better understanding about the principles of process support environ-
ments. The goal is to provide knowledge-based technology for software engineering problems.
The synthesized approach should allow to prescribe development processes without hindering
creativity. Necessary restrictions and rules delineate human process performance. It is intrinsic to
software development processes that at any time in the project the next steps can be described pre-
cisely, whereas the later steps do not have a sharp shape. Process support environments should
provide mechanisms to adjust the project plan from time to time. Moreover, capturing dependen-
cies during product evolution allows goal-directed backtracking in order to bring the project back
to the right track. Although this vision is still to be achieved, promising results of synthesizing
CoMo-Kit and MVP-E already exist. They concentrate primarily on issues relevant for developers
rather than providing support for project managers (e.g., resource scheduling).

1.“...there is much further research work to be carried out in the area of software process evolution. Under-
standing and managing software process evolution seems to be one of the most difficult challenges that the soft-
ware engineering community is facing today.” ([27], p. 1126)

- 3 -

As a first step of integration a careful analysis revealed commonalities and differences of
CoMo-Kit and MVP-E. This was used to define requirements for process-sensitive software engi-
neering environments from our particular perspective [40]. The integration of CoMo-Kit and
MVP-E requires the identification of similar concepts. It is interesting that the concepts of
CoMo-Kit are a subset of those present in MVP-L; this is a sign that both approaches contain con-
cepts that are intrinsic to processes in general. On the other hand, the functionality of the
CoMo-Kit process engine exceeds MVP-E because it allows modeling, planning, and enaction
steps to alternate and supports change processes.

In this article, we discuss the next two steps of integration, the definition of a common process
representation schema or language and the implementation of a prototypical process engine. The
core of the new language, which is called Modeling Language and Operational Support for Soft-
ware Processes (MILOS), is operationalized by an integrated process engine. In this article, spe-
cial attention is paid to the traceability of the defined requirements set up for the process engine.
The collaboration between CoMo-Kit and MVP-E is illustrated using a scenario which describes
replanning a process under enactment:

The scenario embodies a model of a standard implementation process, as for example described
in [20]. A module’s design is complete, and source code is to be created. In parallel, test data has
to be derived either by analyzing the code (in the case of a later structural or white-box testing) or
by eliciting the data from the requirements document (in the case of a later functional or
black-box test). The choice of selecting the first or second alternative of test data derivation
depends on the module’s control flow complexity. If complexity is high then structural testing is
applied, else functional testing should be selected. Because the module’s complexity is not known
prior to its design or implementation (depending on the complexity measure) resources cannot be
assigned to the data derivation process. As soon as the value is measured, project management
instantiates the corresponding process, and schedules a responsible developer for it. Please note
that although this could be described as a simple if-then-else situation in a process script, the task
for a process management system is much more difficult. Planning makes statements - sometimes
in a vague manner - about future objects. The more the project proceeds the more concrete state-
ments can be made. In the above example, derivation of test data for either functional or structural
testing is allowed to be instantiated. One reason is that resources should be assigned only to one
of these two tasks. Moreover the process engine must manage further refinement of already
instantiated processes (e.g., insert a refinement of derivation of test data for functional testing
which includes equivalence or boundary analysis) and retracting decisions already made (e.g., the
system’s design is modified and the module is split into two modules).

We understand the work presented in this article as an example of how knowledge-based tech-
niques can be used to address one of the major problems in the area of automated support for
managing software development processes.

The article is organized as follows: The concepts implemented in MVP-E and CoMo-Kit are sur-
veyed in Sections 2 and 3. Section 4 identifies requirements for process support environments.
They are derived from a comparison of both approaches in [40]. The integration is described in
the Sections 5-8: Section 5 explains the integrated system architecture, Section 6 discusses con-
cepts of the integrated language, Section 7 gives an example, and Section 8 outlines the opera-
tionalization of the language concepts. In Section 9 we compare our findings to related research
work. Finally, Section 10 summarizes the article and gives an outlook on future work.

- 4 -

2 MVP-E
The MVP project aims at support for management of software development processes from a
software engineering perspective. Properties of such processes are, for example:

• Many people are involved in a project and perform many different types of processes.

• The processes last long, sometimes several months or years.

• Not all process steps are known in advance when planning the project.

• Erroneous performance or bad process models require repeated performance, probably also of
other processes than the failed one.

The MVP project began at the University of Maryland and continues at Universität Kaiserslau-
tern, Germany. Its goal is to develop MVP-E, as an instance of the ideas developed in the TAME
project [6]. Special attention is paid to measurement activities which are essential if the environ-
ment is to be used by all roles of the project and the organization [26]. MVP-E supports modeling,
planning, simulation, enactment, measurement, recording, and packaging of software engineering
processes. The main idea is to split descriptions of software development processes into views.
Every view is generally defined as a projection of a process model that focuses on selected fea-
tures of the process [39].

The language MVP-L (multi-view process modeling language) is used to describe development
processes. It distinguishes between processes, products, resources, and their attributes which cor-
respond to measurable qualities of the objects; processes, products, and resources are instantiated
with respect to types, and are put into relation in a project plan [8]. A second notation is used to
represent GQM trees which are specifications of measurement goals from a specific
viewpoint [5]. The discussion of GQM is beyond the scope of this article. MVP-L has been eval-

- 5 -

uated in several industrial settings (e.g., [22]). The case studies’ feedback became input for the
evolution of MVP-L. Table 1 summarizes the main concepts of MVP-L.

Figure 1 shows an excerpt of an MVP-L example from the scenario above. It stems from a for-
malized standard implementation process defined in the IEEE Standard 1047-1991 [20]. Since the
implementation process can be seen as a typical process in a software life cycle, it is used
throughout the whole article to demonstrate the modeling styles of the different approaches. For
the purpose of a comprehensible illustration, minor differences among the process descriptions in
the standard and the adapted examples were accepted.

MVP-E’s process engine MVP-S uses a project plan and process models (types) to build its own
representation of a real-world project [26]. The process engine is used to manage project data and
to guide developers in their work. Processes can be enacted if they are enabled (i.e., their entry
criteria are true). The agents, represented as resources assigned to processes, are responsible for
achieving the goals specified in the exit criteria, without invalidating the process invariants.
Throughout enactment, measurement data is taken which is used by all project roles (e.g., testers,
managers) to reason about the project and to trigger actions. The following assumptions (labeled
as AMi) were made during the evolution of the MVP-E approach and are made explicit to allow
the comparison of the underlying motivations and goals with those of CoMo-Kit later on:

AM1: The concepts implemented in MVP-L are suited to express a single view on a particular
software process and are made explicit to allow to compare the goals and motivation of different
approaches.

AM2: Attributes of processes, products, and resources are sufficient for all measurement pur-
poses.

AM3: Developers are guided by enacting understandable process models.

Concept Explanation
Process Activities which create, modify, or use a product.
Product Software artifact describing the system to be delivered.
Resource Human agent or tool.
Attribute Measurable characteristic of a process, product, or resource.
Criteria (entry, invariant,
exit)

Expression which must be true when starting, enacting, or terminating a process
respectively.

Refinement Breaking down the structure of a process, product, or resource into less complex
parts.

Instantiation Creating an instance of a process type, product type, or resource type and provid-
ing actual parameters.

Product Flow Relationship between processes and products. It is distinguished between reading,
writing, and modifying access.

Resource Allocation Assigning personnel to processes in order to perform the processes.
Process Model, Product
Model, Resource Model

Type descriptions of processes, products, and resources respectively. The name
Model might be misleading in this context, because their instances are models of
real-world processes, too.

Table 1: Concepts of MVP-L

- 6 -

AM4: All project roles are supported by using a common representation of a project. Each role

What is the process name?

What attributes exist?

What products are accessed?

What is produced?

What must hold for starting
and terminating the process?

What should ever be true?

What sub-products are created?

What are the sub-processes?

How is the abstract product build?

What alternatives for
process performance exist?

What is the product
flow between processes?

How are abstract attributes computed?

process_model ImplementationProcess (eff_0 : ProcessEffortData) is

 process_interface
 exports

effort : ProcessEffortData;
 product_flow
 consume
 cswreq: ComprehensiveSoftwareRequirements;
 desdoc: DesignDocument;
 valdoc: ValidationDocument;
 external: External;
 produce
 codedoc: CodeDocument;
 entry_exit_criteria
 local_entry_criteria

desdoc.status = ’complete’ and cswreq.status = ’complete’;
 local_invariant

effort <= eff_0;
 local_exit_criteria

codedoc.status = ’complete’ or desdoc.status = ’faulty’;
 end process_interface
 process_body
 refinement
 objects
 sc: SourceCode;
 td: TestData;
 oc: ObjectCode;
 od: OperatingDocumentation;
 isw: IntegratedSoftware;
 create_sc: CreateSource;
 create_td1: CreateTestData_just_from_reqs;
 create_td2: CreateTestData_using_sc;
 gen_oc: GenerateObjectCode;
 perf_ins: PerformIntegration_without_Stubs_n_Drivers;
 cod: CreateOperatingDocumentation;
 object_relations
 ((create_sc & create_td1 & gen_oc & perf_ins & cod)

| (create_sc & create_td2 & gen_oc & perf_ins & cod));
 interface_refinement
 codedoc = (sc & td & oc & od & isw);
 interface_relations
 create_sc(swdes_descr => desdoc.swdes_descr, sc => codedoc.sc);
 create_td1(swr => cswreq.swr, treqs => valdoc.treqs,
 tplinf => valdoc.tplinf, td => codedoc.td);
 create_td2(swr => cswreq.swr, sc => codedoc.sc,
 treqs => valdoc.treqs, tplinf => valdoc.tplinf,
 td => codedoc.td);

.....
 attribute_mappings

effort := create_sc.effort + create_td1.effort + create_td2.effort +
 gen_oc.effort + perf_ins.effort + cod.effort;

 end process_body
.....

Fig. 1: MVP-L example of an implementation process with two alternatives

- 7 -

gets its own views on the project which are tailored to its specific needs.

AM5: Products are represented without storing their contents. Direct access to the product is not
supported. Only product models are accessed.

AM6: The steps of modeling, planning and enaction are sequential. Project plans remain
unchanged over the project lifetime.

AM7: Planning provides parameters which adapt process models to different contexts.

AM8: Plan deviations are not considered. Support for modifying the project’s state is not pro-
vided.

Several other approaches for supporting software development processes have been developed [1,
10, 36]. In general, we can distinguish between languages for modeling fine-grain processes (i.e.,
used to integrate tools, hence being similar to programming languages) and coarse-grain pro-
cesses (i.e., used to guide software developers and to coordinate their tasks, hence being similar to
specification languages). Currently, the software engineering community focuses on the latter
kind of processes. An example is the evolution of the Marvel Strategy Language, which was first
designed for use in a single-user system and now supports distributed teams [7]. MVP-L belongs
to the second category of languages, too. Another classification of software process languages can
be made with respect to their level of abstraction. Granularity ranges from abstract levels with
rich semantics of the concepts (e.g., MVP-L) down to detailed levels which provide powerful
mechanisms to build one’s own process building blocks (e.g., APPL/A [37]).

Not all languages cover an equal set of aspects of software development processes. Mostly, the
languages provide a solution for a particular problem and support only a limited set of roles [35].
For example, the language SLANG focuses on capturing the dynamic aspects of a process [3].
MVP-L addresses process interfaces, rule-based specification of development processes and mea-
surement aspects. Quality considerations have become more and more important within software
development. However measurement aspects have not been taken into account in most of the pro-
cess support environments. Approaches to support measurement activities within software devel-
opment already exist [24]. MVP-E is an environment which includes measurement support.

3 CoMo-Kit
The CoMo-Kit project at Universität Kaiserslautern aims at support for planning, enacting, and
controlling complex workflows in design processes from a knowledge engineering
perspective [28]. Critical properties of such workflows are:

• They are too complex to be planned in detail before enactment starts. Results of activities are
needed to plan later steps. Planning and enacting must alternate during the whole project.

• Decisions are made during enactment which rely on assumptions that can be proved invalid
afterwards. When decisions must be rejected, users must be supported in reacting to the new sit-
uation (i.e., backtracking must be supported).

- 8 -

The CoMo-Kit project tackles the problems that are caused by these properties. The CoMo-Kit
system consists of a tool which allows to model complex workflows, and a workflow manage-
ment system, the CoMo-Kit Scheduler, which enacts and controls the modeled workflows. To
describe complex design processes, the CoMo-Kit methodology uses four basic concepts: tasks,
methods, concepts, and agents. Table 2 contains an overview and short descriptions of the terms.
Using these concepts generic software process models and concrete project plans can be
described. The enactment of design processes is supported by a flexible workflow management
system, the CoMo-Kit Scheduler. In Table 3, concepts of the Scheduler are explained. The main
features of the Scheduler are:1

• The Scheduler allows for alternation of planning and enactment of development processes.

• Based on the information flow between tasks, causal dependencies emerge during enactment.
The underlying assumption is that the inputs of a task influence the outputs. For every task a set
of logical implications is created; the implications relate the assignment of values (i.e., products)
to the input variables of a task with the assignment of values to the output variables. Whenever
the assignment of an input variable becomes invalid, the assignments of the output variables
become invalid too. The causal dependencies improve the traceability of design decisions and
support the users in reacting to changes.

• The scheduler manages dependencies extractable from the task decomposition. Whenever a task
is invalidated by replanning of the project, the Scheduler notifies team members working on
subtasks that they can stop working on them.

1.The techniques which are used to implement these features are beyond the scope of this article. For a
detailed description see [29,30]. For a description from a software engineering point of view see [11].

- 9 -

• To handle dependencies efficiently, reason maintenance techniques are used [33,34] and
extended. The Scheduler uses the justification structures to support dependency-directed back-
tracking.

The following assumptions (labeled as ACi) were made during the evolution of the CoMo-Kit
approach:

AC1: Modeling, planning, and enacting design processes are interfering steps and often alter-
nate.

AC2: Project plans have to be modified and refined during project lifetime.

AC3: The Scheduler manages the state of the project. Therefore, it should have access to all
products and manage them.

AC4: Users must be supported in tracking of where the result of their work is used and what
information they need in producing their results.

AC5: Changing decisions is inherently needed in complex projects. This includes the manage-
ment of their effects (i.e., changes of project states).

AC6: Causal dependencies are the basis for an active notification mechanism which informs
users about relevant changes of the project state.

Concept Explanation

Task (Process) A description of the goal which should be reached by an activity.

Input Variables Information which is needed to work on a task.

Output Variables Information which is the outcome of working on a task.

Method A description of how a task’s goal can be reached. For every task a set of alternative
methods can be described.

Atomic Method Atomic methods assign values to the output variables of the related task.

Complex Method Complex methods decompose a task into subtasks.

Information Flow A complex method is described by an information flow graph which consists of (sub-)
tasks and variables. The information graph shows the input/output relations of tasks.

Concept Class A description of the structure of the information (product structure) which is produced
during enactment.

Slot Stores part of product information.

Concept Instance Concrete information, for instance a product (such as requirements document) which
is the outcome of using a method to solve a task.

Agent An actor who works on tasks. Agents apply methods to solve tasks.

Table 2: The CoMo-Kit modeling framework

- 10 -

AC7: Only processes performed by individuals are modeled in order to keep track of dependen-
cies.

AC8: One formalism can be used to describe both generic process models and concrete project
plans.

Figure 2 shows the process decomposition from the scenario of Section 1 modeled in CoMo-Kit.
The product flow within the method “Implementation with Structural Testing” is shown in
Figure 3.

Several other approaches for supporting workflows have been developed. In [18] an overview on
current workflow management techniques is given: Current technology assumes that the process
model is defined before process enactment. The CoMo-Kit approach was developed for applica-
tion domains where planning and enactment alternate, for example design processes (e.g., city
planning). Some workflow management systems support object-oriented data structures. For
instance in [32] an innovative approach is described which integrates Petri nets with semantic

Concept Explanation

Decision To solve a task (i.e., to reach the goal) an agent has to decide which method should be
applied.

Assignment Applying an atomic method to a task results in the assignment of values to its output vari-
ables.

Task Decomposition Applying complex methods to tasks results in a set of subtasks which are included into an
agenda. This agenda stores a list of all tasks which must be solved to finish the project.

Dependency From the information flow a set of causal dependencies is derived. We assume that there is
a causal dependency between the inputs of a task and its outputs. The Scheduler manages
these dependencies.

Decision Retraction During project enactment decisions can be found erroneous, which results in an inconsis-
tent project state. Then, at least one decision must be retracted and replaced by another
alternative.

Table 3: Concepts of the CoMo-Kit Scheduler

Fig. 2: Process decomposition in CoMo-Kit

Process

Method

Process Decomposition

Alternative Method

- 11 -

data models. CoMo-Kit also supports object-oriented data structures. In addition, CoMo-Kit sup-
ports reacting to decision changes.

4 Requirements

Section 2 and Section 3 presented assumptions which guided the evolution of two process support
approaches. The assumptions can be regarded as requirements for a process-sensitive software
engineering environment. The following list of requirements for process support environments
reformulates the assumptions made in both approaches. Incompatibilities caused by different
assumptions in the two approaches are removed (as shown in [40]), so the requirements represent
a unified view. For each requirement (labeled as Ri) the related assumption(s) (AMi or ACi) are
given. The set of requirements is not to be understood as an exhaustive list of features a pro-
cess-sensitive software engineering environment should have. The requirements were defined
from the perspective of both systems CoMo-Kit and MVP-E. Nevertheless we consider them as
mandatory for any support environment for real development processes. Some aspects are not dis-
cussed in this article (e.g., resource scheduling, time planning, budgeting).

R1: The main concepts of software development processes should be provided. (AM1, AC7,
AC8) Algorithms for planning, analyses, or enactment need to implement the semantics of basic
entities (e.g., processes, products, product flow). It is important to tailor the concepts’ representa-
tion to human and machine understanding.

Fig. 3: Product flow in CoMo-Kit

Process

Product

Product Flow: In/Out

Product Flow: Modify

- 12 -

R2: Organizational processes should be supported. (AM4) Specific interfaces to organizational
processes are required. Further development in the area of multiple views on a project representa-
tion is needed in order to gain role-specific representations [39].

R3: Both short-term planning (detailed level) and long-term-planning (abstract level) have to be
supported (AM7, AC1). It is desirable to plan activities early in a project, but it is not practical in
every case. Mechanisms are needed for planning abstract and general processes as well as for
planning concrete and state-dependent ones.

R4: Allow for alternating modeling, planning and enaction. (AM6, AC1, AC2) Information for
planning is incomplete when launching the project. Required information may be produced dur-
ing the project. Later planning steps refine the models or the original plan.

R5: Document decisions. (AC4, AC6) Many decisions about products and processes need to be
documented [37]. The decisions explain how products evolve and processes are performed. The
decisions are used to recognize deviations and to notify the system of inconsistencies. Dependen-
cies between decisions can be used for backtracking and also for reasoning about products [11].

R6: Reactions to changing decisions. (AC5) When an invalid state is reached after retracting a
decision, backtracking should be performed in order to reach a branch where an alternative can be
chosen.

R7: Manage the products whenever possible. (AM5, AC3) Inconsistencies between the
real-world project and the representation managed by the environment must be avoided.

R8: Support measurement activities. (AM2) Quantitative data from processes and products are
needed in order to develop software systematically [36]. Measurement, evaluation, and storage of
data is needed.

R9: Software developers need to be guided. (AM3, AC4) Process models explain what activities
to perform next and what their goals are.

R10: Software developers’ tasks need to be coordinated. (AM4, AC6) Process models are used to
relate tasks of software developers. In the case a result becomes invalid, coordination means noti-
fying others to interrupt their work.

R11: Execution of process fragments. Process programs are fine-grain process models. They are
described in a formalism similar to programming languages. Process programs are used to auto-
mate process steps. It must be ensured that the dependencies established during a tool invocation
are captured and documented in the environment’s repository.

The first ten requirements describe features of either CoMo-Kit or MVP-E. Automatic execution
of process programs is necessary. This functionality should be to realize without bigger problems
because experience from other projects exists [36]. Commercially available process-sensitive
software engineering environments (e.g. Process Weaver [16]) have already demonstrated the
suitability of a shell-like language for the definition of process programs. Fulfilling all mentioned
requirements in the system is the challenge of integrating CoMo-Kit and MVP-E. Nevertheless,
there are still open problems which are not tackled by the synthesis of both approaches:

P1: State Manipulation. If a project deviates from the plan it might be necessary to shift the whole
project state by a “brute-force” manipulation of state variables instead of performing backtrack-

- 13 -

ing. The problem is how to modify the models according to the new state of the real-world project
and to preserve existing dependencies.

P2: Type-Instance Correspondence. Direct manipulation of instances results in a project trace
which cannot be described by the plan’s process types. This is also true when types of active pro-
cesses are modified. Mechanisms are needed to establish correspondence between instances and
types.

P3: Existing Products and Measurement Data. Backtracking and choosing another alternative
should not mean throwing away the data already measured and the products already developed.
Mechanisms for reuse within a project are needed. At the moment it is not clear how to handle
measurement data in the case of backtracking. For example, effort data should be kept but state-
ments about products (e.g., subjective classification of complexity) might become invalid.

Although the requirements listed in this section present a unified view of both approaches this
does not mean that a particular user has to handle such a tool in its entire complexity. Some fea-
tures might be interesting for only some roles (e.g., a project planner is interested in R4 but not
in R9) and some functionality should be kept completely away from users (e.g., R10).

5 The Integrated System Architecture
Within the CoMo-Kit project techniques, methods, and systems were developed which support
planning and enacting complex distributed cooperative design processes [12,31]. This system is
the basis for the prototypical implementation of an integrated system, called the MILOS environ-
ment, which fulfills requirements R1-R11.

Figure 4 shows the system architecture of MILOS. It consists of three main parts:

• The Modeler allows to plan a project and to extend and modify that plan.

• The Scheduler supports the enactment of a project plan and manages the project state
and history (i.e., the project track).

• The Experience Base stores generic (reusable) project plans, products etc.

Fig. 4: The Architecture of the MILOS System

Project Planning
(Modeler)

Project Execution
(Scheduler)

Experience
Base

plan
interpretation

plan
changes

packaging
of project
experience

reuse

Process-sensitive
Software Engineering Environment

- 14 -

The MILOS system is organized as a proactive client/server application. The MILOS Scheduler
as the project plan server gets the types from the modeler, instantiates them and manages the cur-
rent project state. It informs the clients in order to guide software developers. The clients are used
for interaction between the developers and the Scheduler via event handling mechanisms. The
Scheduler may actively send messages to the clients, i.e. the system extends the typical client
server architecture towards an agent-oriented structure.

Building the experience base is a future topic of our work and the results are too preliminary to be
described here. For example, the arrow labeled “packaging of project experience” is a quite com-
plex operation on all kinds of information (e.g., quality models, measurement data, products,
reports) generated throughout the project. We will follow the line of work described in [4]. This
article concentrates on the concepts behind the Modeler and the Scheduler.

6 MILOS: A Language for Project Planning
This section explains the main ideas of MILOS on how to represent software process knowledge.
The rationales for the introduced constructs were already presented in a variety of publications
which describe MVP-S [25,26] and CoMo-Kit [28]. Moreover, a recent paper [40] explains the
requirements for the language constructs from a common point of understanding.

Project planning means developing a model of how the project should be performed. At the
beginning of a new project, a first step creates an initial project plan. This plan contains descrip-
tions of process types, definitions of products to be created and a list of the team members
involved in the development process. For large-scale projects, a detailed plan cannot be devel-
oped before the enactment starts but planning and execution steps must be alternated (R4): Start-
ing with the initial plan the first processes are enacted. Based on the results, the plan is refined
and/or extended (see scenario at the end of Section 1).

To model cooperative development processes, our approach uses four basic notions (fulfilling
R1): Process Types, Methods, Products and Resources. In the following, these terms are defined
as far as it is necessary to understand this article omitting syntactical details of our project plan-
ning language. Later on in Section 7, our modeling language MILOS is illustrated by an example
which is based on the scenario.

Process Types

A process type describes an activity which must be carried out during process enactment to reach
the goals of the project. The description of a process type consists of several parts:

Goal. A (textual, informal) description of the goal of the activity which will be accessed by the
process performers during enactment. The goal guides developers by explicitly stating what
should be achieved during enactment.

Product Parameters. A product parameter will store input, output and modified products dur-
ing enactment. Inputs are consumed during process enactment to produce the outputs of the
activity. Products which can be changed during enactment are stored in the modified parameter
list. In the project plan, we are only able to state which type of information is used or must be
produced. For every input the flags1 mentioned in Table 4 are defined. Output parameters of a

- 15 -

process may be optional or required.

Context information. A list of references to information which is not changed by the process
enactment (e.g. a file containing the coding standards of the company or a reference to manu-
als).

Precondition. A formal, boolean condition using process and product attributes which must
hold before the process enactment may start. Preconditions are, for example, used to check if
the inputs fulfil a given requirement.

Invariant. A formal, boolean condition using process and product attributes which must hold
during process enactment. An invariant, for example, may predefine that the enactment of a
process must not exceed a certain deadline.

Postcondition. A formal, boolean condition using process and product attributes which must be
true after the process enactment has finished. Postconditions are, for example, used to check if
the output of a task has a desired quality.

Agent bindings. For every process type, the planner should state criteria which must be fulfilled
by agents to be allowed to work on the process during enactment. For example, an agent must
have skills in Smalltalk-80 programming and belong to department ZFE 153. We distinguish
two types of agent bindings: Process performer and process supporter. The performer is
responsible for the execution of the process and has to produce the outputs. He may be sup-
ported by (several) other agents.

Attributes. An attribute describes a feature of the process type, e.g. the time needed for its
enactment.

Methods. A list of alternative courses of action which can be used to reach the goal. The proc-
ess type describes what has to be done, methods describe how it can be done.

Products

To model products a standard object-centered approach is used. As usual, we distinguish between
types and instances (for sake of brevity, we will use the term “product” for “product instance”).

1.The flags are mutually exclusive.

Flag Name Meaning

necessary for planning The input must be available before the planning of the pro-
cess starts. Planning here means defining a method or choos-
ing one of the predefined methods.

necessary for execution The input is not needed for planning but it must be available
before the execution starts. Execution here means applying
the method.

optional The input is needed neither for planning nor for execution
(but it may be helpful to have).

Table 4: Parameter Flags

- 16 -

Product types define a set of slots to structure the product. Every slot is of a particular type. Basic
types (e.g., STRING, REAL, ...) are used to specify data. Product types defined by the modeler
are used to aggregate products thus forming abstraction hierarchies. During process enactment we
represent product instances as values which are assigned to parameters. The type of a parameter is
specified by a product class. Product attributes are used to describe qualities of the product, e.g.
the complexity of a module.

Methods

A method describes how the goal of a process can be achieved. For every process type, the project
plan may contain a set of (predefined) alternative methods1.

Methods are executed by agents (see below). Not every agent who can be responsible for a pro-
cess may have the abilities to use every method (For example, an implementation process may be
enacted by the methods “Implement in C++” or “Implement in Smalltalk”). Therefore, we allow
to describe additional agent bindings for every method.

We distinguish between atomic (or elementary) and complex (or composed) methods. The first
kind of methods is used to assign products to parameters. Process scripts describe how a given
task can be solved by a human. Process programs are specified in a formal language so that com-
puters can solve a task automatically without human interaction. For an atomic method it is possi-
ble to specify what (software engineering) tools are used during enactment. The second kind of
methods, complex methods, describe the decomposition of a process into several subprocesses.
For every (sub)process type, its cardinality is given which determines how many instances of this
process will be created during enactment. Both product types and process types represent building
blocks of process models. Mechanisms should be provided in order to link instances together to
build a project plan. Therefore complex methods contain two ways of mapping (or binding) prod-
ucts to processes. Process interface relations are used to specify the mappings of slots of subproc-
esses (i.e., output parameters of one subprocess are bound to input parameters of the other
subprocesses); a horizontal product flow is specified. Product mapping expressions are used to
map levels of abstraction. Parameters of subprocesses are mapped onto parameters of the process
which contains the complex method. n:1-mappings are allowed which specify aggregation of
products. The product mapping must be level complete, i.e. each product appears in an expres-
sion. In Figure 5 the relation between a process type, one method and the subprocesses is illus-
trated. Note, that level completeness is achieved because process interface relations allow for
transitivity of product mappings (e.g., P-3 is mapped onto P-a by the bindings of P-2). Rules are
defined which restrict mappings and allow for consistent bindings (e.g., it is not allowed to map a
product consumed by the process to an output parameter of one of its subprocesses).

Finally, a complex method describes how attributes of the subprocesses can be used to compute
attributes of the superprocess (attribute mapping).

1.For example, reusable methods may be extracted from old project traces and stored in the experience base.
Later on the methods are incorporated into the project plan.

- 17 -

Resources: Agents & Tools

Resources are used for project planning and process enactment/execution. Agents are active enti-
ties which use (passive) tools for their work.

Processes are either performed by actors (= human agents) or by machines. The first is called
„enactment“, the latter „execution“.

For every process type, the project plan defines the properties an agent must have to work on it.
Further, our system stores information about the properties of every agent. For actors, we distin-
guish three kinds of properties: qualifications (q), roles (r), and organization (o). For example, in a
project plan, it may be defined that the process type “implement user interface” should be exe-
cuted by an actor who has skills in using the Visualworks Interface Builder (q), is a programmer
(r), and works in department ZFE 153 (o). During process execution, our system compares the
required properties of a process with the properties an agent possesses. This allows to compute a
set of agents who are able to solve the task.

Having sketched our language for project planning (which is basically an extension of MVP-L
with methods and object-oriented data modelling facilities), we will now give an example of its
use before we explain how the enactment of plans is supported.

Super Process PT-1

Subprocess
PT-1.3

P-c

P-b
P-a

P-5P-4

Subprocess
PT-1.2 P-5P-3

Subprocess
PT-1.4 P-9

P-7Subprocess
PT-1.1 P-2P-1

P-8

Method-1 for PT-1

Parameter

Process Type

Input/OutputProcess Interface Relations

Fig. 5: Vertical and horizontal mapping of parameters

Product Mapping

- 18 -

7 A MILOS Example
Figure 6 shows the reference process as part of a MILOS adaption of the scenario mentioned in
Section 1. The intended representation for modeling in MILOS is graphical. For the purpose of a
compact description the example here is given in a textual representation.

To perform the implementation process two alternative methods are offered. Depending on a deci-
sion which can be influenced by measurement data, one of these methods can be applied, e. g.,
implementation with structural testing (see Fig. 7). This method is complex and it refines the
implementation process into several subprocesses.

What is the name of the task?

What attributes exist?

What products are
accessed?

What is produced?

What must hold for starting
and terminating the process?

What should be hold

What is the goal

Fig. 6: Excerpt of a MILOS example: Implementation process with two alternatives

No products are modified!

Who handles the process?

What aids support the process enaction?

What are alternative methods to solve the task?

to be reached?

during process enactment?

process type Implementation Process
instatiation parameters

eff0: Process Effort Data
goal

Transformation of the Detailed Design representation of a
software product into a programming language realization

comment
IEEE Standard 5.3

attributes
effort: Process Effort Data

products
consume

cswreq: Comprehensive Software Requirements
desdoc: Design Document
valdoc: Validation Document
external: External

produce
codedoc: Code Document

modify
criteria

entry criteria
desdoc.status = 'complete' and cswreq.status = 'complete'

invariant
effort <= eff0

exit criteria
codedoc.status = 'complete' or desdoc.status = 'faulty'

agent bindings
performer
supporter

context
Coding Standards

methods
Implementation with Structural Testing
Implementation with Functional Testing

end process type

- 19 -

8 Supporting Planning and Enactment: The MILOS
Scheduler
Based on the requirements in Section 4 we implemented a prototype workflow engine, the
MILOS Scheduler. Its main features are:

• It provides the people involved in the project with relevant plan, process and context informa-
tion to optimize their work and to reduce the information procurement time. This includes the
distribution of the processes to the appropriate employees and the presentation of information
needed for enactment, e.g. products and process goal descriptions.

• It reduces coordination effort of each team member by notifying the process performer of events
(for example plan changes and modified products) he is affected by.

• It allows its users to reject (planning) decisions, and to extend and to modify the initial plan.

• Process knowledge managed by the scheduler allows to guide the project members in their activ-
ities.

• It integrates process and measurement technologies.

8.1 Scheduler Support for Different User Groups

The scheduler as a central component of the new process-sensitive software engineering environ-
ment supports different roles in a software development project.

Fig. 7: Complex method describing an alternative refinement

What is the name

What are the

of the method?

sub-processes?

What is the product
relationship between
different levels of
abstraction?

How are abstract
attributes computed?

complex method Implementation with Structural Testing
comment

Test Data is being produced using Source Code
refinement

create_sc: Create Source (1)
create_td: Create Test Data using Source Code (1)
gen_oc: Generate Object Code (1)
perf_ins: Perform Integration (1)
cod: Create Operating Documentation (1)

product mapping
create_sc (desdoc.sw_des_descr -> sw_des_descr, codedoc.sc -> sc)
.....

process interface relations
create_sc.source_code = create_td.source_code
.....

attribute mapping
effort := create_sc.effort + create_td.effort + gen_oc.effort +

perf_ins.effort + cod.effort
end complex method

What is the product flow
between processes?

- 20 -

• Project planners are able to define new processes to be performed to reach the projects’ goals.
They may access information about the current state of the project, the reasons which led to it,
and dependencies between processes. This information is valuable for changing the project plan
in case of an undesired situation (e.g. product changes, new requirements from the customer).

• The Scheduler enables project managers to delegate processes to their team members and to
supervise their enactment. The Scheduler automatically notifies team members of project
changes and therefore reduces the manager’s coordination effort.

• For team members the Scheduler provides a To-Do agenda. When a team member accepts a pro-
cess waiting for execution, the Scheduler generates a work context which guides him in his
activities and allows him to access relevant products and tools. The Scheduler informs him
about product modifications which are relevant for his work and notifies him if the process is
removed (by the project planner) from the current project plan.

8.2 Operationalizing the Project Plans

The following describes the semantics of the MILOS system in a quite informal manner. This is
due to the focus of the article, i.e. explaining the history and integration of the MILOS system.
More detailed information about the interpretation of the process models, especially how knowl-
edge-based techniques are employed to support software development, can be found in [13,30].
The most important entities managed by the scheduler are processes, methods, decisions for
methods and products. During execution processes and methods passes through various states.
Every state is determined by the activities done by the process performers and the dependencies to
other processes and decisions. State changes are caused by both activities of process performers
and state changes of related entities.

Processes

Precondition. A process is enabled as long as all entry criteria are valid. Only an enabled process
can be accepted and enacted.

Delegation. Within a process definition an agent binding is specified. During execution, this bind-
ing is evaluated to obtain the set of agents permitted to execute the process. The set is determined
by matching the agent bindings with the properties of the agents. The resulting set of authorized
agents is further reduced by the project manager. He delegates the process to a subset of potential
process performers. Agent bindings and delegations are not static. If an agent binding or delega-
tion changes before the process has been accepted, the set of authorized agents is adapted. If a del-
egation changes after a performer has accepted the task, the new performer takes over the role of
the old one without changing the process state.

Method selection and rejection. In order to reach the process goal, the project planner selects an
applicable method. In Section 7 the Implementation Process knows the two methods Implementation
with Structural Testing and Implementation with Functional Testing. The set of applicable methods is a
subset of the methods defined in the project plan. This set may be reduced depending on the cur-
rent project context. Selecting a method results in a decision. A valid decision is part of the actual
project plan. The decision for a method can be rejected later. Such a change activity has conse-

- 21 -

quences on other parts of the project because of dependencies between processes, methods and
products. Additionally, the method set can be modified by adding or removing methods from the
process specification.

Process invariants. The process invariants have to stay valid during the process performance. If
they become invalid, the project planner has to be informed in order to change the current project
plan, to assign additional resources, or to initiate other appropriate reactions.

Postcondition. After the work on a process has been finished, its exit criteria are checked. If this
checking fails an exception event is forwarded to the process manager who has to resolve this
conflict, for example by replanning the process.

Methods

Applying complex methods. A complex method refines a process into a set of one or more sub-
processes. Applying a complex method, each subprocess is instantiated x-fold. The x is deter-
mined by the cardinality of the subprocess. In the model, each subprocess has a definite or ∞
cardinality. The cardinality ∞ is replaced during process execution by a definite value. The con-
sumed, produced and modified product parameters of processes with a cardinality greater than
one are identified by a definite index.

Applying atomic methods. Atomic methods produce products or data. The name and type of the
products that have to be produced are specified in the project plan. If an atomic method is applied,
the resulting products are assigned to the corresponding parameter. Additionally, a dependency
between the decision for the method and the produced products is established: the rejection of the
decision results in the retraction of the parameter assignments.

Product mapping of complex methods. The product mapping of complex methods allows for
product exchange between the superprocess and its subprocesses (see also Figure 5). Figure 7
shows that product desdoc.sw_des_descr is mapped to product sw_des_descr. The mapping direc-
tion is given by the direction of the arrow sign.

Product interface relations. The product interface relations specify the exchange of products
between the subprocesses of a complex method. If a product parameter pair is specified in the
interface relations, the product assigned to one of the parameters is automatically assigned to the
other one, too.

Agent bindings The agent binding to methods is a subset of those specified in the corresponding
process. The qualification of process performers and process supporters expressed by attributes
have to fulfill the respective requirements of the methods. This semantic leads to the effect, that
an agent who accepts a task may only apply a subset of the specified applicable methods.

8.3 Managing Causal Dependencies

The important relationships MILOS manages explicitly are causal dependencies between pro-
cesses and subprocesses, and product flow dependencies. MILOS captures these dependencies
when agents make decisions (e.g., either functional or structural testing is performed).

- 22 -

Dependencies between Processes and Subprocesses

Complex methods decompose processes into a set of subprocesses. If an agent decides to apply a
complex method the subprocesses related to the method become part of the actual project plan. A
process that is part of the actual plan is called “valid“. The validity of the subprocesses depends
on the decision for the corresponding complex method. Therefore we establish a dependency
between the validity of the subprocesses and the decision for the corresponding method. If the
decision for the method is rejected, the rationale for the validity of the resulting subtasks is no
longer given. The subprocesses become invalid. Decisions which have been taken within the sub-
processes must be retracted, too.

Product Flow Dependencies

As described above a product assignment is dependent on the decision for the corresponding
atomic method. The products produced by an atomic method enter in further decisions and consti-
tute dependencies. The dependencies become important for the process execution, if product pro-
ducing decisions are rejected. For details see [11,30]. The causal dependencies that are extracted
from the process models can be formulated as logical implications. The formalization allows to
store the required process information within an „intelligent memory” and to automate the notifi-
cation of users after changes. Another advantage is that the semantic of the dependencies is made
explicit.

The general planning and design model REDUX [30] is the basis for the management of depen-
dencies. REDUX provides mechanisms to decompose processes and to easily change decomposi-
tion decisions. Because dependencies between decisions are managed, dependency-directed
backtracking is enabled. From CoMo-Kit we have taken over the product flow dependency man-
agement [29]. Both approaches use a Justification-based Truth Maintenance System (JTMS [14])
known from Artificial Intelligence to handle the effects of changes efficiently. In a JTMS knowl-
edge about the “world” is represented in a set of beliefs. They are inferred from a set of assump-
tions that may change over time; that means the world is understood as non-monotonic, i.e.
changing. Assumptions are axioms (or facts) describing basic elements of the world. For each
belief a justification explains how it was interfered. The justifications therefore record dependen-
cies among the beliefs. If any assumption changes the JTMS updates the beliefs. Only beliefs that
are affected from a change are examined. The set of beliefs to update is determined by the justifi-
cations (i.e., dependencies). MILOS uses the REDUX approach and components of CoMo-Kit to
infer the status (e.g., validity) of processes, product assignments, decisions, and all other MILOS
concepts. The causal dependencies between the objects are represented as justifications. Because
changes in MILOS project plans usually have a limited scope of effect, the state of objects
affected from a change is updated efficiently. In [30] a detailed description of the mechanisms is
provided.

8.4 Flexible Planning

Supporting flexible planning is a key feature of the MILOS project. MILOS allows to refine and
change the initial plan during enactment. Coordinating and managing causal dependencies is a
prerequisite to support plan changes. In this section, a few examples for dynamic planning with
MILOS are given. For a detailed description see [12, 13].

- 23 -

Refining the Plan

One goal is to allow the planner and the project manager to delay planning decisions to the execu-
tion phase, when project specific information is available. Within MILOS there are the following
possibilities to do so: By defining more than one method to solve a goal or by extending the initial
model during enactment.

• making decisions: In the example of Figure 6, two alternative methods Implementation with Struc-
tural Testing and Implementation with Functional Testing are defined for the process Implementation
Process. The decision for one of the alternatives is made during execution. The planner can use
current process knowledge for decision support.

• extending the model. During execution, increasing process knowledge may result in new solu-
tions. In MILOS, the planner can add new methods to the process model or refine existing ones
while the model is enacted. The new method is inserted into the dependency network of the
scheduler and immediately available to the current project. In the example shown in Figure 6,
the planner might add a new method named Implementation With Equivalence Class Testing for the
Implementation Process and select the method afterwards.

Changing the Plan

During project enactment changing conditions and planning errors lead to discarded solutions.
These changes affect the project plan as well as the produced products. As a result, the plan has to
be adapted to the new situation in order to represent the project accurately. At this point, the ben-
efit of managing dependencies between events and plan states becomes visible: the effects of plan
changes are handled by the system, affected team members are notified, and require guidance on
how to react in an appropriate way. Our approach provides several alternatives of changing the
plan: rejecting and making decisions or changing the process model.

• changing decisions: Imagine, that in the above example the project planner already applied the
method Implementation with Structural Testing (see Figure 6) after analyzing the consumed product
desdoc. After selecting the method, he recognizes, that this method would exceed the effort limit
specified within the invariant. Therefore, he rejects the decision and selects the other method.
Because the Scheduler tracks product flow dependencies and dependencies between decisions
and subprocesses (see above), the effects of the changes are propagated through the dependency
network. For example, the subprocesses create_sc, create_td, gen_oc, per_ins, cod of method
Implementation with Structural Testing (Figure 7) change their state: they are not longer part of the
actual project plan. The team members who have been working on these processes are notified
of the state change.

• changing the model. There are cases in which changing decisions as described before is insuffi-
cient: modeling errors or incomplete models. Often these kinds of errors are noticed after start-
ing the enaction of the plan. Nevertheless the errors have to be corrected to guarantee an
accurate enactment which means the project state representation has to be a model of the
real-world project. Such errors can be eliminated by changing the process models. MILOS
allows to modify method definitions, process types, and agent bindings. The current implemen-
tation allows to correct errors within method or process definitions only if the affected parts of

- 24 -

the entities are not executed yet. In the example of Figure 7 the planner could remove process
create_td if it was not already enacted. Currently we extend MILOS to tackle consequences of
changes of already enacted processes (i.e., problems P1 and P3, see Section 4, are not addressed
for the reasons explained above).

8.5 Discussion of the Requirements

MILOS is based on the MVP-L approach. Therefore, the main concepts of software development
processes are supported (R1). The MILOS Scheduler supports project planners and managers
(R2, R3). Extending, modifying, and changing the current project plan is supported by the
MILOS Scheduler using CoMo-Kit techniques. Planning and enactment decisions are handled by
the Scheduler (R5). Because the dependencies point to the cause of an event, the Scheduler is able
to guide the user in appropriately reacting to changes (R6). Alternating planning and enactment
steps is supported (R4). MILOS provides an object-centred product model and the Scheduler is
able to store and manage products (R7). Process and product attributes and the attribute mappings
support measurement activities (R8). By using a workflow engine, the Scheduler, team members
are guided and coordinated in their activities. Activities for reacting to events may itself have glo-
bal effects on the project planning and execution. Because the Scheduler manages dependencies,
the performer is relieved of coordination activities resulting from such changes (R9, 10). The
MILOS language has been designed to automate process steps by using process programs (R11).
Currently, this feature is not yet implemented in the Scheduler, but it will be a future extension.

9 Related Work
To check for completeness of the MILOS language we compared it with existing frameworks and
definitions that were developed by Conradi, Fernström and Fuggetta [9], Feiler and
Humphrey [15], Lonchamp [23], and Armitage and Kellner [2] (see Table A.1 of the appendix).
Every framework provides a consistent set of concepts that embodies a particular understanding
about aspects of software processes. In contrast to the concepts presented in this article, aspects of
the meta-process (i.e., the process of process modeling) are also described in some of the
papers [9, 15, 23]. The four definition frameworks are not formalized but natural language is used
to explain the meaning of their concepts. Because the terms were developed in different contexts,
one cannot assume a perfect match between them. Therefore, we see the terms from different
frameworks as similar, not as equal. Under this assumption, MILOS implements most of the con-
cepts covered by the other frameworks. No predefined type classifying all components of the
delivered product (i.e., as proposed as Deliverable by Lonchamp) is present in any approach. All
other abstract concepts covered by the frameworks are considered in MILOS.

Process-sensitive software engineering environments which support evolution of enacted process
models are a focal point of current research, but the results are still immature [27, 37]. In the
remainder of this section, we discuss environments relevant for our work, and point out the main
differences to our approach. Important requirements not met by the related approaches are
checked (which leaves open whether the other requirements are met). The unsatisfied require-
ments are marked by a ‘¬’.

The SPADE environment is a system for developing analyzing, and enacting process models
described in the language SLANG (Spade LANGuage) [3]. Activities are modules with

- 25 -

well-defined interfaces and a Petri net specification as a body. Activity types may be changed dur-
ing enaction but they do not affect existing instances. Whenever the type of an active process is
modified, SPADE prompts the user to provide a transformation function. This is a solution for the
problem P2 (i.e., type-state correspondence) which is not solved by our approach. SLANG pro-
vides only a small set of software development process concepts (¬R1). Also the user must decide
when to start process evolution. The system does not provide any support to decide which parts
need to be changed (¬R5).

GRAPPLE is an operator-based approach which supports planning and plan recognition [19]. The
operators encapsulate the functionality of both tools and processes performed by agents. Reason
maintenance techniques are used to manage dependencies between process steps; dependencies
between products are not maintained (¬R5). Our synthesized approach extends these techniques
by explicitly representing dependencies between products, so that a goal-directed reaction to
changes of the product state is possible. GRAPPLE does not support the alteration of planning
and enactment (¬R4).

The database-oriented EPOS Process Modeling System distinguishes between classes (tem-
plates), instances thereof, and information about the creation, change, and conversion of classes
and instances on a meta-level [21]. Feedback about correctness and performance of the enacted
process model triggers changes of classes and instances which are under version control. Classes
and instances may be changed in the case of inactive processes. The user is responsible for estab-
lishing consistency between classes and instances. Thus the EPOS Process Modeling System
tackles the problems P1 and P2. No dependencies between process fragments are managed (¬R5),
so that it is not possible to determine what processes accessed a faulty product and might have to
be enacted another time. Detection of deviations and recognition of a change’s impact are com-
pletely left to the user (¬R6).

Redoing is an operation in the Hierarchical and Functional Software Process (HFSP) approach
that allows cancellation of erroneous activities and doing that part of the process again [38]. Soft-
ware development processes are understood as functions organized in a hierarchy (called an
enaction tree). Redoing means cutting a subtree out of the enaction tree and replacing it with
another tree which is enacted instead and anew. The decision to redo is specified in the process
models. It can be seen as a sort of “goto” where results in the subtree are discarded. In contrast to
our approach, short-term planning is not supported (¬R3), the process models must be completely
defined before interpretation (¬R4), and the decisions for redoing are predefined, which means
that criteria to detect deviations from the plan must be specified within the models (¬R5).

10 Summary and Future Work

This article presents the integration of two process support approaches, namely CoMo-Kit and
MVP-E. They both were developed independently, to solve particular and isolated problems of
automated process support. A recent comparison revealed commonalities and differences of both
systems [40]. Requirements were set up for process-sensitive software engineering environments.
They are addressed by the newly created approach MILOS which is a synthesis of CoMo-Kit and
MVP-E. The concepts of MILOS were illustrated, using a scenario of a standard implementation
process. By relating MILOS to other approaches the uniqueness of this approach was shown. On

- 26 -

the other hand problems were encountered and identified as potential future work within our
research work.

Roughly spoken, as an intermediate result of the synthesis MVP-L’s concepts are used to describe
software processes and the concepts of the CoMo-Kit process engine are used to enact the mod-
els. Using these basic elements, we are able to alternate modeling, planning, and enaction modes.
Our integrated approach provides a sufficient set of concepts to capture real-world processes. By
integrating knowledge based techniques a flexible process-sensitive software engineering envi-
ronment will be created which manages dependencies between project information and supports
backtracking.

The MILOS system is still in an immature state, for example it lacks functionality which a pro-
cess-sensitive software engineering environment should have and which are proposed in this arti-
cle (i.e., cf. R11 and P1 to P3). Moreover, the MILOS system was not yet validated in a real
software development project. Although some experiments and case studies have been performed
in both our work groups to evaluate the usefulness of both MVP-S and CoMo-Kit (see for exam-
ple [25] for an analysis of MVP-S and [31] for a case study of CoMo-Kit), an in-depth analysis
whether the MILOS system fulfills the expectations is still needed. In fact, the validation of the
system is recognized as an important goal and will be performed in the near future. The develop-
ment of a family of control software systems for building automation will serve as a test environ-
ment for the validation of the MILOS system. The future experiments have the purpose to
evaluate the applicability of the ideas presented in this article and to identify potential future
research in order to improve the designed process-sensitive software engineering environment.

Acknowledgments: Sigrid Goldmann did careful work comparing CoMo-Kit and MVP-L. She
also helped to improve the article’s readability. The anonymous reviewers gave important com-
ments to improve the article. The authors would like to thank the members of both work groups
who contributed to many ideas presented in this article.

- 27 -

References

[1] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. Software process languages: Survey and assessment. In
Proceedings of the Fourth Conference on Software Engineering and Knowledge Engineering, Capri, Italy, June
1992.

[2] James W. Armitage and Marc I. Kellner. A conceptual schema for process definitions and models. In Dewayne E.
Perry, editor, Proceedings of the Third International Conference on the Software Process, pages 153–165. IEEE
Computer Society Press, October 1994.

[3] Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software process model evolution in the SPADE en-
vironment. IEEE Transactions on Software Engineering, 19(12):1128–1144, December 1993.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experience Factory. In John J. Marciniak, editor,
Encyclopedia of Software Engineering, volume 1, pages 469–476. John Wiley & Sons, 1994.

[5] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal Question Metric Paradigm. In John J. Marcin-
iak, editor, Encyclopedia of Software Engineering, volume 1, pages 528–532. John Wiley & Sons, 1994.

[6] Victor R. Basili and H. Dieter Rombach. The TAME Project: Towards improvement–oriented software environ-
ments. IEEE Transactions on Software Engineering, SE-14(6):758–773, June 1988.

[7] Israel Z. Ben-Shaul, Gail E. Kaiser, and George T. Heineman. An architecture for multi-user software develop-
ment environments. In H. Weber, editor, Proceedings of the Fifth ACM SIGSOFT/SIGPLAN Symposium on Soft-
ware Development Environments, pages 149–158, 1992. Appeared as ACM SIGSOFT Software Engineering
Notes 17(5), December 1992.

[8] Alfred Bröckers, Christopher M. Lott, H. Dieter Rombach, and Martin Verlage. MVP–L language report version
2. Technical Report 265/95, Department of Computer Science, University of Kaisers-lautern, 67653 Kaisers-lau-
tern, Germany, 1995.

[9] Reidar Conradi, Christer Fernström, and Alfonso Fuggetta. A conceptual framework for evolving software proc-
esses. ACM SIGSOFT Software Engineering Notes, 18(4):26–35, October 1993.

[10] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communications of the ACM, 35(9):75–90, Sep-
tember 1992.

[11] Barbara Dellen, Kirstin Kohler, and Frank Maurer. Integrating software process models and design rationales. In
Proceedings of the Knowledge Based Software Engineering Conference, pages 84–93, 1996.

[12] Barbara Dellen and Frank Maurer. Integrating planning and execution in software development processes. In
Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE
’96), pages 170–176. IEEE CS Press, June 1996.

[13] Barbara Dellen, Frank Maurer, and Gerd Pews. Knowledge based techniques to increase the flexibility of work-
flow management. Special Issue of the Data & Knowledge Egnieering Journal, 1996. to appear.

[14] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.

[15] Peter H. Feiler and Watts S. Humphrey. Software process development and enactment: Concepts and definitions.
In Proceedings of the Second International Conference on the Software Process, pages 28–40. IEEE Computer
Society Press, February 1993.

[16] Christer Fernström. Process WEAVER: Adding process support to UNIX. In Proceedings of the Second Interna-

- 28 -

tional Conference on the Software Process, pages 12–26. IEEE Computer Society Press, February 1993.

[17] Pankaj K. Garg and Mehdi Jazayeri. Process-centered Software Engineering Environments. IEEE Computer So-
ciety Press, 1996.

[18] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow management: From process modeling
to workflow automation infrastructure. Distributed & Parallel Databases, 3:119–153, 1995. Kluwer Academic
Press, Boston.

[19] Karen Erickson Huff. Plan-Based Intelligent Assistance: An Approach to Support the Software Development
Process. PhD thesis, University of Massachusetts, September 1989.

[20] Institute of Electrical and Electronics Engineers. IEEE Standard for Developing Software Life Cycle Processes,
1992. IEEE Std. 1074-1991.

[21] M. Letizia Jaccheri and Reidar Conradi. Techniques for process model evolution in EPOS. IEEE Transactions
on Software Engineering, 19(12):1145–1156, December 1993.

[22] C. D. Klingler, M. Neviaser, A. Marmor-Squires, C. M. Lott, and H. D. Rombach. A case study in process rep-
resentation using MVP–L. In Proceedings of the Seventh Annual Conference on Computer Assurance (COM-
PASS 92), pages 137–146, June 1992.

[23] Jaques Lonchamp. A structured conceptual and terminological framework for software process engineering. In
Proceedings of the Second International Conference on the Software Process, pages 41–53. IEEE Computer So-
ciety Press, February 1993.

[24] Christopher M. Lott. Measurement support in software engineering environments. International Journal of Soft-
ware Engineering & Knowledge Engineering, 4(3):409–426, September 1994.

[25] Christopher M. Lott. Measurement-based feedback in a process-centered software engineering environment.
PhD thesis, Department of Computer Science, The University of Maryland, College Park, Maryland 20742, Feb-
ruary 1996.

[26] Christopher M. Lott, Barbara Hoisl, and H. Dieter Rombach. The use of roles and measurement to enact project
plans in MVP-S. In W. Schäfer, editor, Proceedings of the Fourth European Workshop on Software Process
Technology, pages 30–48, Noordwijkerhout, The Netherlands, April 1995. Lecture Notes in Computer Science
Nr. 913, Springer–Verlag.

[27] Nazim H. Madhavji and Maria H. Penedo. Guest editor’s introduction. IEEE Transactions on Software Engineer-
ing, 19(12):1125–1127, December 1993. Special Section on the Evolution of Software Processes.

[28] Frank Maurer. Hypermedia-based Knowledge Engineering for distributed, knowledge-based Systems. PhD the-
sis, Universität Kaiserslautern, 1993. In German.

[29] Frank Maurer. Project coordination in design processes. In Proceedings of the Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WET ICE ’96), pages 191–196. IEEE CS Press, June 1996.

[30] Frank Maurer and Jürgen Paulokat. Operationalizing conceptual models based on a model of dependencies. In
A. Cohn, editor, Proceedings of the 11th European Conference on Artificial Intelligence. John Wiley & Sons,
Ltd., 1994.

[31] Frank Maurer and Gerhard Pews. Supporting cooperative work in urban land–use planning. In Proceedings of
COOP–96, 1996.

- 29 -

[32] Andreas Oberweis. Workflow management in software engineering projects. In S. Medhat, editor, Proceedings
of the 2nd International Conference on Concurrent Engineering and Electronic Design Automation, 1994.

[33] Ch. Petrie. Planning and Replanning with Reason Maintenance. PhD thesis, University of Texas, Austin, 1991.

[34] Charles Petrie. Context maintenance. In Proceedings of the AAAI–91, 1991.

[35] H. Dieter Rombach and Martin Verlage. How to assess a software process modeling formalism from a project
member’s point of view. In Proceedings of the Second International Conference on the Software Process, pages
147–158, February 1993.

[36] H. Dieter Rombach and Martin Verlage. Directions in software process research. In Marvin V. Zelkowitz, editor,
Advances in Computers, vol. 41, pages 1–63. Academic Press, 1995.

[37] Stanley M. Sutton, Jr., Dennis Heimbigner, and Leon J. Osterweil. Language constructs for managing change in
process–centered environments. In Proceedings of the Fourth ACM SIGSOFT/SIGPLAN Symposium on Practi-
cal Software Development Environments, pages 206–217, 1990. Appeared as ACM SIGSOFT Software Engi-
neering Notes 15(6), December 1990.

[38] Masato Suzuki, Atsushi Iwai, and Takuya Katayama. A formal model of re–execution in software process. In
Leon J. Osterweil, editor, Proceedings of the 2nd International Conference on the Software Process, pages
84–99. IEEE, IEEE CS Press, February 1993.

[39] Martin Verlage. Multi–view modeling of software processes. In Brian C. Warboys, editor, Proceedings of the
Third European Workshop on Software Process Technology, pages 123–127, Grenoble, France, 1994. Nr. 772,
Springer–Verlag.

[40] Martin Verlage, Barbara Dellen, Frank Maurer, and Jürgen Münch. A synthesis of two process support approach-
es. In Proceedings of the 8th Software Engineering and Knowledge Engineering Conference (SEKE’96), pages
59–68. Knowledge Systems Institute, Skokie (IL), USA, June 1996.

- 30 -

Appendix

Table A.1 relates software process terms defined by different authors. The terms explain
real-world concepts. The definitions given in [2, 9, 15, 23] are in natural language and therefore
lack formality. The overview presented in Table A.1 should not be understood as a precise com-
parison of terminology. The terms differ slightly in their meanings even when they have the same
name. The matching was performed based on careful but subjective assessment. The reader is
referred to the cited literature for a detailed explanation of the terms. A table cell two high means
that the term corresponds to two terms of another framework. Empty cells mean that no term with
an equivalent meaning to other terms of that row is defined in the approach discussed in the col-
umn.

- 31 -

a.Not all process terms presented in [9, 15, 23] are considered in the corresponding columns, because many of them describe
no concept of software development processes but ideas of enaction (e.g., enactment state), organizational processes (e.g.,
monitoring), or process characteristics (e.g., liveness).

b.Process which contains no refinement.
c.Predefined attributes used by a process engine (interpretation machine) to manage an overall project state.
d.Attribute is explained as “a textual description of information”. This general and abstract definition matches the other

terms in the row only partially.

MILOS CoMo-Kit MVP-L Armitage and
 Kellner [2]

Feiler,
Humphrey [15]a

Lonchamp
[23]a Conradi et al. [9]a

Process Task Process Process
(instance)

Process (Element) Software Process Process

Process
Type

Process
Model

Process (type) Process Definition Template

Production Process

Method Method Activity Process Step Activity

Activity
Description

Process Script

Procedure Process Program

Atomic
Method

Atomic
Method

Elemen-
tary Pro-
cessb

Process Step Activity

Task Task

Process
Attribute

Process
Attribute

Activity Statec

Complex
Method

Complex
Method

Refine-
ment

Decomposition

Precondition
Invariant
Postcondi-
tion

Criteria Behavioral
Information

Process Constraint Constraint

Project Plan Project
Plan

Process Plan

Project Plan Software Project

Product
(Instance)

Concept
Instance

Product Artifact
(instance)

Artifact Artifact (Input)

Software Item (Out-
put)

Product
Type

Concept Class Product
Model

Artifact (type) Template

Product Slot Attribute Elemen-
tary Prod-
uct

Software Product

Deliverable

Product
Attribute

Product
Attribute

Artifact Statec

Product
Flow

Information
flow

Product
Flow

Artifact Flow

Resource Resource Resource

Agent Agent Personnel Agent Agent Agent Agent

Tool Tool Tool

Property Resource
Attribute

Agent Statec

Attribute Attribute Attributed

Model Process Defini-
tion

Process Definition Generic Process
Model

Template

Table A.1: Relating Different Frameworks

- 32 -

The “Deutsche Forschungsgemeinschaft (DFG)” is a major sponsor of basic research activities in Ger-
many. Besides individual projects DFG sponsors long-term strategic research activities at German univer-
sities. The most prestigious form of funding are so-called “Sonderforschungsbereiche (SFBs)”, special
research institutes aimed at addressing fundamental research areas. Specific characteristics of SFBs
include their affiliation with a highly respected scientific department at a German university, funding peri-
ods of 9 to 15 years (with regular evaluations), and interdisciplinary collaboration.

The SFB 501 on “Development of Large Systems with Generic Methods” was started at the University of
Kaiserslautern on January 1, 1995. It aims at developing and evaluating a set of techniques, methods and
tools for supporting the fast and reliable customization of complex domain specific software systems. The
emphasis is on techniques, methods and tools that support reuse of all kinds of software artifacts ranging
from system components to process fragments and other related knowledge.

In the first step existing techniques, methods and tools are being evaluated for suitability within the domain
of process control - starting with the application scope of building automation.

The mid-term goal of the SFB is to generalize the resulting techniques, methods and tools such that they
can be used within other application scopes and domains to establish similar reuse-based development pro-
cesses.

The long-term goal of the SFB is to contribute to the science base for transforming software development
from an art to an engineering discipline.

Within the SFB several research groups from the departments of Computer Science and Electrical Engi-
neering collaborate. Current employment count includes 8 professors, 17 full-time researchers and about
the same number of part-time student assistants. The following projects have been established:

• Application scope “Building Automation”: A project to investigate requirements on such systems and
build simulation models for system/acceptance testing

• Software Engineering Laboratory: A project to support both the prototype development of a first
building automation system and conducting experiments

• Experiment-based modeling of software development processes/knowledge based planning and con-
trol of SE processes: Two projects to support the planning and execution of processes for software
development and experimentation based on existing knowledge

• Generic communication systems/Generic system software: Two projects to investigate the possibilities
for generic modeling of system software needed within the chosen application domain

• Formal description techniques: A project to select, modify, integrate and evaluate the appropriate
description techniques for generic development

Additional projects will be proposed at the next SFB review. The work discussed in this article is a very
first result of a collaboration of the second and third projects listed above.

The Sonderforschungsbereich 501

