
Research on Learning Software Organizations –
Past, Present, and Future

Harald Holz1 and Grigori Melnik2

1 DFKI GmbH, Knowledge Management Department,
PO Box 2080, 67608 Kaiserslautern, Germany

Harald.Holz@dfki.de
2 Department of Computer Science, University of Calgary,

Calgary, Canada
melnik@cpsc.ucalgary.ca

Knowledge itself is power, not mere argument or ornament.
Francis Bacon (Meditations Sacrae, 1597)

1 Introduction

In order for a software organization to stay competitive, its software development
needs to be part of organizational change. The organization’s ability to change and to
adapt quickly to environmental changes provides a foundation for growth and power
[7]. For such changes to happen, the learning capabilities of the organization have to
be enhanced, being an essential part of producing more effective and efficient work
practices. Moreover, continuous learning is essential for surviving – let alone
prospering – in dynamic and competitive environments [15]. The Learning Software
Organization (LSO) workshop series has been promoting this vision since 1999,
addressing the questions of organizational learning from the software development
point of view.

Though the workshop series is relatively young, the ideas it is based on have been
circulating for decades. As early as in 1971, Weinberg recognized software
development as learning: “writing a program is a process of learning – both for the
programmer and the person who commissions the program” [23]. This was
superseded by the engineering approach, when software development began to be
considered as “software engineering”, omitting for a long period the humanistic
people-centric aspect of it. The history of LSO workshops reflects this development to
a certain degree. In 1999, LSO started with the premise that “with continuous
technological change, globalization, business reorganizations, e-migration, etc. there
is a continuous shortage of the right knowledge at the right place at the right time. To
overcome this shortage is the challenge for the Learning Organization.” [20]. In other
words, the main challenge considered six years ago was the availability of
knowledge. As a result, many solutions were built to address this. The proliferation of
knowledge bases is a clear indication of this. The knowledge is primarily considered
to be an object, and, thus, it can be codified, stored, retrieved and distributed.

Unfortunately, many such solutions suffered from the “build it and they’ll come”
syndrome which resulted in a lack of user involvement and enthusiasm. Researchers
and practitioners in LSO began to realize that knowledge externalization and storage
are not automatically equal to knowledge re-use, that building an experience factory
for the sake of experience factory will not pay off the investment. Thus, new efforts to
enhance the utilization of knowledge/experience bases/repositories along with
improving the software development process commenced. Years 2000 and 2001 were
greatly influenced by the Software Process Improvement (SPI) initiatives. The
challenges addressed went beyond the availability of knowledge – but further into its
understandability, re-use, relevancy and applicability. The LSO 2001 main theme
was the enablement of the members of the learning software organizations “to
effectively quarrel situational requirements, taking past experience into account.
Besides improving internal communication (group learning), this also includes
documenting relevant knowledge and storing it (for reuse) in an organizational,
corporate memory” [1].

Nowadays, it is commonly recognized that promotion of a learning culture and
fostering of the exchange of experiences are imperative. Increasingly, experts agree
that approaches to achieve this must be based on interdisciplinary research, taking
into account results from economical, organizational, cultural, psychological and
technological areas.

The year 2002 was marked by the symbiosis of organizational learning and agility,
the problems facing both the LSO community and the agile methods community
seeming to be complementary [10]. Specifically, for the LSO community, the issue is
how to quickly adapt to new technologies and market pressures, while for the agile
community the issues are how not to lose institutional knowledge and how to enable
inter-team learning. The participants commonly recognized the need for a balance
between knowledge capture/dissemination and flexibility that enhances the ability of
an organization to quickly adapt. In the meantime, the debate about the epistemology
of knowledge – whether knowledge is an object or a relation (a context-bound one) –
continues.

In 2003, the workshop progressed into the aspects of the evolution of learning
organizations and the resulting evolution of repositories they use. Essentially, the
workshop focused on the issues of maintainability and scalability of externalized
knowledge [17].

This year (2004), we continue the advancement of the concepts, approaches and
techniques to help learning software organizations succeed. The papers included in
this volume clearly build upon the results of the previous five workshops. Though a
good portion of research today is still dedicated to the development of knowledge
management methods and tools, there is an increasing trend towards knowledge
management approaches that are lightweight, i.e., do not introduce a considerable
additional burden on developers and end users, while at the same time ensuring that
the hoped for experience factories do not become “experience cemeteries” which no
employee uses. Consequently, the focus is on practical knowledge management
initiatives that:

• allow for an incremental adoption without a large up-front investment;
• are flexible enough to allow quick and easy improvements;

• encompass not only the structure, the strategies and the systems of the learning
organization itself, but also of those who develop, follow and utilize these
structure, strategies and systems.

The following section briefly summarizes current work reflecting the state-of-art and
state-of-practice in learning software organizations as presented at the Sixth
International Workshop on Learning Software Organizations (LSO 2004) in Banff,
Canada.

2 Current Topics in LSO Research and Practice

The 13 full papers and 3 short papers in this volume are drawn from an international
base of authors (53), including Belgium, Brazil, Canada, Germany, Mexico, New
Zealand, Norway, Portugal, Spain, Switzerland, and United Arab Emirates. A
consistent message across all these diverse contributions is that, in order to be
effective and agile, we should consider organizational learning as a holistic process,
taking into account the particularities of the organization under consideration. Most
concepts, approaches and tools will be applicable only in a certain context. The
contributions are organized into the following chapters:

• Experience-Based Information Systems
• Software Maintenance
• Communities of Practice
• Planning LSOs
• Case Studies and Experience Reports

Experience-Based Information Systems

Software development processes consist of various knowledge-intensive tasks during
which software engineers need to make informed decisions. The contributions in this
chapter describe information systems that support users in their decision-making in
diverse tasks such as risk management and COTS selection.

Falbo et al. present an ontology-based to support organizational learning in risk
management [5]. Their tool GeRis supports novice project managers in the
identification, evaluation, ranking, and contingency planning of risks for a current
project by providing the manager with corresponding experience from similar, stored
projects.

Santos et al. present an enterprise ontology that provides the basis for various tools
as part of an enterprise-oriented software development environment (EOSDE) [21].
They illustrate their approach by describing two tools that make use of this ontology:
Sapiens, a corporate ‘yellow pages’ tool, and RHPlan, a resource allocation planning
tool. Their EOSDE is already being used in 18 small and medium-size software
companies.

In [9], Gomes et al. describe their tool REBUILDER, a CBR system that supports
designers by retrieving former UML designs similar to the current design diagram,
and by automatically augmenting the current diagram by missing elements from
former designs. Moreover, the system provides functionality to evaluate the resulting
diagrams based on various object-oriented metrics.

Mohamed et al. propose a conceptual model to support decision making during
COTS selection processes [13]. They outline how this model can be implemented as
an agent-based decision-support system that addresses important issues such as
changing stakeholder preferences and evaluation process simulation to try out
different scenarios.

Ras and Weibelzahl argue that experience packages retrieved from repositories are
often inadequate for learning and competence development, e.g., because users might
not have sufficient knowledge to understand the package content, or because users
might be unsure of the risks involved on applying the packaged experience [16]. Their
approach addresses these issues by automatically enriching experience packages with
additional learning elements based on didactical considerations.

Software Maintenance

Several studies indicate that the processes needed to correct errors in a software
system, or to adapt a system to the ever-changing environment incurs most of the
overall expenses during the life-cycle of a software product.

In [22], de Sousa et al. propose to use postmortem analysis (PMA) to help manage
the knowledge gained during maintenance projects, both knowledge on the
maintenance process itself and on the system maintened. Based on a standardized
maintenance process, they detail when to conduct PMA during process execution,
what knowledge to look for, and how to perform PMA during maintenance.

Rodríguez et al. outline the architecture of a multi-agent system designed to
manage knowledge generated during the software maintenance process [18]. Their
web-based system aims at proactively providing maintenance engineers with
knowledge sources that could help them in carrying out their current tasks.

In [19], Roth-Berghofer reports on experience gained from setting-up and running
an internal CAD/CAM help desk support system for IT-related problems at a large
company. He discusses lessons learned from this project, where a systematic
maintenance process needed to be established, e.g. in order to enhance the domain
model appropriately whenever necessary because of environmental changes.

Communities of Practice

Communities of Practice (CoP) are informal groups of organization members that
share common interest, practices, and subjects. Approaches that integrate CoPs into
daily work processes by lightweight IT support as well as the advantages of informal
knowledge exchange are discussed in this chapter.

Chau and Maurer present the lightweight, Wiki-based knowledge management
tools MASE and EB [2]. These tools support agile teams by providing them with a

process support systems that enables users to share their experience by a collaborative
creation and task-specific retrieval of WIKI pages containing information related to
the task type. Moreover, first result from a study on inter-team learning using MASE
and EB are reported.

In [14], Montoni et al. present a knowledge management approach for acquiring
and preserving knowledge related to specific software processes. Their tool
ACKNOWLEDGE supports the capture of different knowledge items such as lessons-
learned or ideas, as well as their subsequent evaluation by an evaluation committee,
and the packaging by knowledge managers. Knowledge items can be retrieved from a
community of practice repository via a web-based system with regard to a given
process type, user-specified keywords and knowledge types.

In [12], Melnik and Richter analyze the role of imprecise statements in
conversations among software developers. They argue that impreciseness can be very
useful in interaction, and describe how finding an optimal level of impreciseness can
be interpreted as a learning problem for software organizations.

Planning LSOs

An important characteristic of learning software organizations is that learning
processes are systematic – learning should not occur in an ad-hoc, chaotic fashion, but
as part of the organization’s overall strategy, where continuous learning is identified
as an explicit goal and methods are deployed to achieve it.

In order to be agile, integrated and aligned, an organization must be architected
accordingly. Therefore, Goethals et al. present their framework FADE for managing
the concurrent development of the business and the ICT side of an enterprise [8].
FADE identifies several enterprise life-cycle phases as well as their links to the
strategic, tactical, and operational level.

Case Studies and Experience Reports

The contributions in this chapter report on experiences and case studies conducted in
an industry context. The discuss successes achieved as well as mistakes made, and
outline lessons learned.

In [3], Doran reports on his experience with the implementation of knowledge
management techniques in an agile software development department of a start-up
company. He outlines the difficulties encountered ant approaches chosen for handling
knowledge related to process, problem domain and technology, and discusses the
tools introduced into the company to support these approaches.

Based on their experience with an industry partner, Draheim and Weber outline
general conditions for an approach to collaborative learning of software organizations
and academia [4]. They propose a co-knowledge acquisition and sharing process that
is lightweight, peer-to-peer, and demand-driven.

In [6], Folkestad et al. report on a case study on the effect of introducing the
Unified Process and object-oriented technologies into a company. The authors
demonstrate the application of activity theory in a qualitative approach, and identify

the iterative development introduced by the Unified Process to have a large effect on
organizational and individual learning, flanked by new roles and more formal
communication patterns.

John and Melster report on their experience from building and using a knowledge
model for a knowledge network for know-how transfer in the area of software
engineering, using a classical approach to model building [11]. Based on this
experience, they outline a personal and peer-to-peer knowledge management
approach that better takes into account the flexible and social structures of knowledge
expert communities.

3 Conclusion

The diversity of topics addressed by the contributions presented at LSO 2004 clearly
reflects the interdisciplinary viewpoint required for successful knowledge
management approaches for software-intensive organizations. Despite the advances
reported on, further effort will need to be spent on a number of outstanding issues and
challenges, in particular: Techniques, methods, and tools that allow for a lightweight,
incremental phase-in of knowledge management; peer-to-peer knowledge sharing;
scalability of proposed knowledge management approaches; measuring the success of
these approaches, to name but a few.

Notwithstanding innovations in the domain of learning software organizations, we
continue to recognize that human skills, expertise, and relationships will remain the
most valuable assets of a software-intensive organization.

References

1. K.D. Althoff, R.L. Feldmann, W. Müller (Eds.): Advances in Learning Software
Organizations, Third International Workshop, LSO 2001, Lecture Notes in Computer
Science, vol. 2176, Springer Verlag, 2001.

2. T. Chau, F. Maurer: Tool Support for Inter-Team Learning in Agile Software
Organizations. LNCS 3096, Springer Verlag, 2004.

3. H.D. Doran: Agile Knowledge Management in Practice. LNCS 3096, Springer Verlag,
2004.

4. D. Draheim, G. Weber: Co-Knowledge Acquisition of Software Organizations and
Academia. LNCS 3096, Springer Verlag, 2004.

5. R.A. Falbo, F.B. Ruy, G. Bertollo, D.F. Togneri: Learning How to Manage Risks Using
Organizational Knowledge. LNCS 3096, Springer Verlag, 2004.

6. H. Folkestad, E. Pilskog, B. Tessem: Effects of Software Process in Organization
Development - A Case Study. LNCS 3096, Springer Verlag, 2004.

7. Gartner UK Ltd.: "The Age of Agility", Report prepared by Gartner for BT, July 2002.
8. F. Goethals, J. Vandenbulcke, W. Lemahieu, M. Snoeck: A framework for managing

concurrent business and ICT development. LNCS 3096, Springer Verlag, 2004.
9. P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro, J.L. Ferreira, C. Bento:

REBUILDER: A CBR Approach to Knowledge Management in Software Design. LNCS
3096, Springer Verlag, 2004.

10. S. Henninger, F. Maurer (Eds.): Advances in Learning Software Organizations, 4th
International Workshop, LSO 2002, Lecture Notes in Computer Science, vol. 2640,
Springer Verlag, 2002.

11. M. John, R. Melster: Knowledge networks -- managing collaborative knowledge spaces.
LNCS 3096, Springer Verlag, 2004.

12. G. Melnik, M.M. Richter: Impreciseness and Its Value from the Perspective of Software
Organizations and Learning. LNCS 3096, Springer Verlag, 2004.

13. A. Mohamed, T. Wanyama, G. Ruhe, A. Eberlein, B. Far: COTS Evaluation Supported By
Knowledge Bases. LNCS 3096, Springer Verlag, 2004.

14. M. Montoni, R. Miranda, A.R. Rocha, G.H. Travassos: Knowledge Acquisition and
Communities of Practice: an Approach to Convert Individual Knowledge into Multi-
Organizational Knowledge. LNCS 3096, Springer Verlag, 2004.

15. M. Popper, R. Lipshitz: Organizational Learning: Mechanisms, Culture, and Feasibility.
Management Learning, 31(2), 2000: 181-196.

16. E. Ras, S. Weibelzahl: Embedding Experiences in Micro-Didactical Arrangements. LNCS
3096, Springer Verlag, 2004.

17. U. Reimer, A. Abecker, S. Staab, G. Stumme (Eds.): Proceedings WM 2003:
Professionelles Wissensmanagement - Erfahrungen und Visionen. GI-Edition - Lecture
Notes in Informatics (LNI), Vol. P-28, Bonner Köllen Verlag (Germany), 2003.

18. O.M. Rodríguez, A. Vizcaíno, A.I. Martínez, M. Piattini, J. Favela: How to Manage
Knowledge in the Software Maintenance Process. LNCS 3096, Springer Verlag, 2004.

19. T.R. Roth-Berghofer: Learning from HOMER, a Case-Based Help Desk Support System.
LNCS 3096, Springer Verlag, 2004.

20. G. Ruhe, F. Bomarius (Eds.): Learning Software Organizations. Methodology and
Applications, Lecture Notes in Computer Science, vol. 1756, Springer Verlag, 1999: 4.

21. G. Santos, K. Villela, L. Schnaider, A.R. Rocha, G.H. Travassos: Building ontology based
tools for a software development environment. LNCS 3096, Springer Verlag, 2004.

22. K.D. de Sousa, N. Anquetil, K.M. de Oliveira: Learning Software Maintenance
Organizations. LNCS 3096, Springer Verlag, 2004.

23. G.M. Weinberg: The Psychology of Computer Programming, Dorset House Publishing,
1998: 12.

