
Acceptance Test Refactoring

Heiko Ordelt, Frank Maurer

University of Calgary

Department of Computer Science

2500 University Dr. NW

Calgary, Alberta T2N 1N4 Canada

hordelt@gmail.com, maurer@cpsc.ucalgary.ca

Abstract. In Executable Acceptance Test Driven Development, acceptance

tests represent the requirements of a software system. As requirements change

over time, the acceptance tests have to be updated and maintained. This process

can be time-consuming and risky as acceptance tests lack the regression safety

net that production code has. Refactoring of acceptance tests is used to keep the

fixtures and the acceptance test definitions consistent.

Keywords: Refactoring, Executable Acceptance Test Driven Development

(EATDD), Story Test, Acceptance Test, Fit

1 Refactoring of Acceptance Tests

As Andrea discusses [1], whenever production code is refactored, unit tests can be

used to check whether the system’s behavior is still unchanged. Acceptance tests lack

such an important regression safety net [1]. Changes to acceptance tests have to be

made safely to minimize the risk of an unwanted behavior change. Additionally, the

fixture code has to be kept consistent with the test definition which is time-consuming

and error-prone. Our goal is to allow the user to carry out changes safely and to keep

the test definition and the corresponding fixture aligned. We distinguish between two

different kinds of acceptance test refactorings:

 Behavior preserving: The behavior specified by the acceptance test is not

changed by the refactoring and there is no user interaction needed to make

the refactored test pass.

 Behavior changing: The behavior specified by the acceptance test is changed

by the refactoring and the user is required to manually update the fixture

and/or system-under-test code to make the refactored test pass.

However, the refactoring has to result in a successful compilation of the fixture code

and in an executable acceptance test.

2 Related Work and Existing Tools

Acceptance test refactoring has been discussed by Andrea [6] who refactored an

acceptance test to simplify its structure and improved the readability. Furthermore [1],

she mentioned that tool support for acceptance test refactoring is an important feature

that the next generation of functional testing tools must support. There are several

Functional Testing Development tools available that support Executable Acceptance

Test Driven Development like FitNesse [8], AutAT [2], ConFIT [3] and FITpro [4],

GreenPepper [7]. These tools and to our best knowledge no other tool supports

acceptance test refactoring yet.

3 Implementation

We extended the open-source acceptance test IDE FitClipse [5] to support acceptance

test refactoring by using the Eclipse refactoring framework (see Figure 1). FitClipse

currently supports the following refactorings:

 Rename acceptance test (ColumnFixture, DoFixture) – behavior preserving

 Add/Remove column (ColumnFixture) – behavior changing

 Add/Remove/Rename action (DoFixture) – behavior preserving

Fig. 1. FitClipse Refactoring Support

References

1. Andrea, J.: Envisioning the Next Generation of Functional Testing Tools, IEEECS, 2007

2. AutAT, http://boss.bekk.no/boss/autat

3. ConFIT, http://bandxi.com/fitnesse/confit.html

4. FITpro, http://www.luxoft.com/fit

5. FitClipse, http://ase.cpsc.ucalgary.ca/index.php/FitClipse/FitClipse

6. Andrea, J.: Brushing Up On Functional Test Effectiveness,

http://www.stickyminds.com/s.asp?F=S9937_ART_2 (last accessed: 03/06/2008)

7. GreenPepper, http://greenpeppersoftware.com/en/products

8. FitNesse, http://fitnesse.org

