
Supporting Test-Driven Development of Graphical User Interfaces Using Agile
Interaction Design

Theodore D. Hellmann, Ali Hosseini-Khayat, Frank Maurer
Department of Computer Science, University of Calgary

2500 University Drive NW, Calgary, AB
Canada, T2N 1N4

{tdhellma, hosseisa, fmaurer}@ucalgary.ca

Abstract— Test-driven development of GUIs is currently very
difficult. On the one hand, to avoid frequent updates of the
tests, test-driven development requires a degree of stability in
the application under development, whereas GUIs are very
likely to change during development. On the other hand, the
easiest way of creating GUI tests – using a capture/replay tool
– requires the GUI to exist. This paper introduces a new
approach to user-interface test-driven development, wherein a
capture-replay tool is used to record test scripts from low-
fidelity prototypes. This allows GUI tests to be written simply
and without requiring that the GUI exist first.

Agile User Experience Design, GUI Testing, Test-Driven
Development

I. INTRODUCTION

There are many reasons to practice test-driven
development (TDD). It encourages communication between
customers and developers, increases programmer confidence,
increases software quality, and (arguably) decreases bug
density without decreasing productivity [1], [2]. As most
published approaches to TDD test the software layer just
underneath the GUI, test-driven development of graphical
user interfaces (GUIs) remains an unsolved problem.

The reason for this is twofold. First, GUIs are very likely
to change repeatedly over the course of development. This
means that tests will need to be updated and repaired
frequently – which is a nontrivial task. Second, the easiest
method of creating GUI tests – using a capture-replay tool
(CRT) – requires that a GUI exists before tests can be
defined. While there are other issues that make testing GUIs
difficult, these two present the greatest challenges to user
interface test-driven development (UITDD).

The approach presented in this paper combines a low-
fidelity prototyping tool with a CRT. First, details of user
stories are collected. Second, these stories are used to create
a low-fidelity prototype of the system. Third, usability
evaluations of the prototype are conducted to identify and fix
flaws that would require changes to the interface. These
steps are repeated until the prototype is sufficiently stable.
Then, the prototype can be augmented with additional
information about the expected behavior of the GUI. This
allows for complex acceptance tests to be recorded using a
CRT. The resulting tests can then be run on the GUI while it
is being developed to ensure that it matches the user
expectations expressed in the prototype.

In short, using a sufficiently detailed prototype for agile
interaction design will garner two benefits. First, usability
concerns will be discovered early in development, meaning
the final GUI will be less likely to require changes. Second,
if the prototype is decorated with automation information –
information that can be used to identify and make assertions
about widgets – and if this information is maintained in the
actual implementation, then tests can be recorded from the
prototype and replayed on the actual GUI as it is
implemented.

II. PROBLEM

In TDD, it has to be possible to write tests before the
code for them exists. Once this is done, code can be written
that makes the tests pass. Throughout TDD, it needs to be
possible to refactor existing code without worrying about
breaking tests. Two significant barriers prevent effective
application of TDD to GUI-based applications. First,
refactoring or changing GUIs tends to break their tests, even
if none of the changes are semantic. Second, writing GUI
tests by hand is difficult. It’s possible to use CRTs to easily
write tests, but this isn’t an option until after a GUI has been
coded, meaning that UITDD must be done by writing tests
manually.

Since a GUI will need to change repeatedly over the
course of a project, its test suite will need repeated
maintenance. This can make GUI tests a double burden.
First, maintenance expenses can be substantial [3]. Second, if
developers start to see failures as “the test’s fault” rather than
as an indication of potential bugs in the application itself [4],
they will be more reluctant to change code and less likely to
take failing tests seriously. Since developer confidence is one
of the core benefits of TDD, the second issue is likely the
more serious of the two [1].

Two potential solutions to the issue of frequent changes
to the GUI arise. First, the team can try to minimize the
changes necessary in a GUI and its test suite. Second,
methods for automatically repairing or significantly easing
the repair of broken GUI tests could be explored. Existing
work on the latter approach will be explained in Section III.
Our idea, which uses the former approach, will be explored
in Section IV.

III. RELATED WORK

A. Capture-Replay Tools

CRTs work by recording interactions with a GUI and
storing them as a sequence of actions that can be replayed on
that GUI. The fundamental difficulty with this is that
methods in widgets can’t be accessed easily by test code.

Initially, CRTs avoided this problem entirely by simply
recording keyboard input and the screen position of mouse
clicks. A test script based on this would simply replay these
actions. This sort of testing was useful for detecting crashes,
but verifying correct system behavior was another matter.
Relying on screen coordinates also has the distinct
disadvantage of being very sensitive to non-semantic
changes to the GUI under test [5], [3]. Rearranging widgets,
for example, would cause test failures even though the
application was functioning properly.

The next generation of CRTs use a method called testing
with object maps, which works by storing as much
information as possible about a widget so that a fuzzy match
can be made when the test is run [5], [3]. This makes tests
more robust against changes, and also allows widgets to be
accessed by the test so that their behavior can be tested.
While testing with object maps is more robust and useful
than testing with direct input, it’s still difficult to code due to
the amount of information that must be known about a
widget in order to correctly locate it.

Keyword-based testing is a GUI testing technique that
has been developed relatively recently. Rather than storing
much data about a widget, this system simply assigns a
unique keyword to each widget [6], [7]. This means that only
a keyword is required to locate and interact with a specific
widget from within a test. Keyword-based testing is a robust,
easy way to write GUI tests, and is now possible through
most CRTs.

B. User Interface Test Driven Development

In recent years, several tools have been developed to
support UITDD [7], [8], [6], [4]. These tools are used for
UITDD because they simplify manual GUI test authoring by
providing framework support that makes identification of
and interaction with widgets simpler and more robust. Some
provide added robustness by storing tests in an intermediate
form along with an intermediate representation of widgets
used in testing, which aids in test maintenance [6].

While these tools can reduce the effort involved in
UITDD, it’s important to note that tests must still be coded
manually. Writing GUI test scripts by hand can be a tedious,
error-prone task, and an agile team using this approach in the
past found that tests written for UITDD tend to need
modification before they can even pass for the first time after
the corresponding GUI code is written [4]. This team found
it faster to rerecord tests using a capture-replay tool than to
attempt to repair the initial target GUI test.

C. Support for Test Script Maintenance

Tool support for test maintenance has also been a subject
of recent research. Work by Memon and Soffa takes a
compiler-inspired approach by attempting to replace events

in a broken test automatically in an attempt to create a legal
sequence of test steps without the need for human interaction
[9]. The TIGOR system works by adding explicit type
information to GUI test scripts, simplifying manual
maintenance [5]. REST, on the other hand, makes a
connection between widgets in an application’s code and
their use in tests, and is able to make suggestions as to where
and why a test script is likely to fail [3]. Actionable
Knowledge Models store tests in an intermediate model,
which allows the root cause of a test failure to be addressed
in a single location rather than propagated between
individual test scripts manually [10].

IV. OUR APPROACH

A. Tools

We developed a tool, ActiveStory Enhanced, which
supports agile interaction design [11]. ActiveStory Enhanced
allows usability engineers to create low-fidelity prototypes.
These prototypes are composed of a set of pictures of various
states of the user interface and “hot zones,” implemented as
clear transparent buttons covering specific regions of a
prototype, which can cause transitions between states. Low-
fidelity prototypes are cheap to create and alter and, through
ActiveStory Enhanced, can be usability tested with a number
of users in a cheap, distributed fashion.

LEET (a recursive acronym for LEET Enhances
Exploratory Testing) is a capture-replay tool we developed
based on Microsoft’s User Interface Automation Framework
(UIAF) [12]. This framework allows for keyword-based
testing, which is essential to our approach. Since the only
property of a widget that is used to identify it is its
AutomationID, it is possible to record a test from an
ActiveStory Enhanced prototype and replay it on an actual
GUI. This is possible by decorating each hot zone with an
AutomationID and ensuring that this same ID is also used for
the corresponding widget in the GUI.

B. Process

First, user stories are used to develop a low-fidelity
prototype of the GUI using ActiveStory Enhanced. Usability
evaluations can be performed on these prototypes. This can
decrease the likelihood that changes will need to be made to
the final GUI, since they’ll be caught before implementation
is actually done. Since low-fidelity prototypes can be
created quickly at little cost, they are ideal for iterated agile
usability evaluations.

Once the prototype has become sufficiently stable
through usability evaluation, it can be decorated with
additional automation information to allow complex
verifications to be made. Using LEET, a set of acceptance
tests can be recorded from interactions with the decorated
prototype. These tests can then be run on the GUI-based
application under development.

The first benefit of this approach is that UITDD can be
performed without additional limitations. The simplest tools
for creating GUI tests, CRTs, can be used, meaning tests do
not have to be written by hand, as is the case with existing

Figure 1. Test sequence for example. Highlighted areas represent mouse clicks in the first four pages and the field to be verified in the last page.

tools used for UITDD. Second, it is expected that test
maintenance costs will be lower due to the usability testing
that is performed prior to implementation. While this will
require more design work up front, it is expected that this
benefit, as well as increased user buy-in, will compensate.
Finally, while tools exist to facilitate repair of broken tests,
the best solution would be to decrease the instances of tests
breaking in the first place. This can avoid the issues with
other approaches to UITDD described above.

C. Example

For an example of UITDD, let us consider the design of a
calculator like that provided with Windows 7. It will contain
keys representing numbers, keys representing operators, and
a display at the top that shows either the number being
entered or the result of the previous operation. For now,
we’ll consider the addition feature only. In this story, the five
button, plus button, nine button, and equals button are
clicked in that order, and we expect that the display should
read “14” at the end.
 A storyboard of this test sequence is shown in Fig. 1 on a
prototype created in ActiveStory Enhanced. For this test, we
will expect “5” to be clicked, then “+,” then “9,” then “=,”
and for “14” to be displayed as the result. Now, we use
LEET to record a sequence of interactions with the prototype
to use as a test script. The result is the test shown in Fig. 2.

Automation information added to this prototype through
ActiveStory Enhanced makes it possible to find widgets and
verify information about them. For example, the hot zone
above the “5” button has “Five” set as its AutomationID.
When the actual GUI is created, if the actual “5” button is
given the same ID, the test will find and click it just as it
would the button in the prototype. Similarly, the Content
property of a hot zone above the display region on the
prototype has been set to 14 in the goal state of the
prototype, and its ID is set to Display. In the UIAF, widgets
that display text tend to set their Name property to that text.
Thus, it is possible to verify that a widget with
AutomationID “Display” exists, and the name property of
this widget is “14.” This will work on the actual GUI for
most widgets that display text.

The test we’ve just recorded can run successfully on the
prototype. The next step is to create the actual GUI. For this
example, Windows Presentation Framework (WPF) is used
because it will automatically add much of the necessary
automation information to widgets from fields that are

commonly used. For example, after adding the five, nine,
plus, and equals buttons and the display field to the main
window, we need only change the name property of each
widget so that it matches the corresponding widget in the
prototype – WPF will automatically interpret these as
AutomationIDs.

Now, in order to run this test on the actual GUI instead of
the prototype, the START action in the test need only be
changed to target the executable file for our GUI. In Fig. 2,
START has been changed to start the actual GUI instead of
the prototype, and will do this as its first step. The test will
fail, as shown in Fig. 3, because none of the application logic
for these buttons exists at this point.

Note that the test fails on the second to last line –
verifying the content of the display field – when running
against the actual GUI. It is able to locate each widget and
perform actions, and it fails because the content of the
display is “0” instead of “14.” This is because keyword-
based testing will tolerate cosmetic changes to widgets.
Widgets can be resized, moved, even switched between
analogous types without breaking the test script.

After adding in the event-handling logic for each button,
which includes updating the display, the original test now
passes. The interface can be completed and this test will still
function appropriately, as seen in Fig. 4.

V. LIMITATIONS

The evaluation of our proposed approach is upcoming.
While it is possible to use our method for UITDD, no
statements can yet be made as to its practicality or
usefulness. In the short term, we plan to conduct experiments
in which developers will be asked to conduct UITDD of
several features of a simple application. This will provide us
with information as to whether our method of UITDD is
practical for individuals, and how much it aids in application
development.

Figure 2. Test for the calculator's simple addition feature.

Figure 3. Failing test - application logic still missing.

In the long term, we hope to be able to conduct a case study
of our method’s use in an industry setting over an extended
period of time to determine its actual usefulness to
development teams.

It is also assumed that, by doing repeated usability
evaluations of a prototype of a GUI, the number of changes
developers will be required to make to the GUI later in the
development process will be lower. At present, the authors
are unaware of any case studies in support of this.
Finally, tests created using the method outlined in Section IV
will be subject to the limitations of the low-fidelity prototype
from which they are recorded. For example, current low-
fidelity prototyping tools, ActiveStory Enhanced included,
work well when prototyping buttons, hyperlinks, and the
like, but struggle with other common features of user
interfaces. For example, there is currently no tool support for
low-fidelity prototyping of text boxes, draggable items, and
gestures, to name a few. This means that tests for these types
of elements must still be written manually.

VI. FUTURE WORK

Once the evaluation of the proposed process has been
performed, the authors hope to explore mixed-fidelity
UITDD. Mixed-fidelity prototypes combine hand-drawn
elements from low-fidelity prototypes with actual widgets.
Our plan is to create a bridge between these widgets in the
prototype and actual features of the application being
developed. By incrementally replacing sections of the low-
fidelity prototype with functional widgets, a GUI can be
incrementally developed from its prototype. This approach
could avoid the gap between recording tests on a low-fidelity
prototype and running them on a separate GUI.

Figure 4. A complete interface. The original test still passes.

REFERENCES

[1] R Jeffries and G. Melnik, "Guest Editors' Introduction: TDD - The Art
of Fearless Programming," IEEE Software, pp. 24-30, 2007.

[2] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, "Realizing
Quality Improvement through Test Driven Development: Results and
Experiences of Four Industrial Teams," in Empirical Software
Engineering, 2008, pp. 289-302.

[3] M. Grechanik, Q. Xie, and F. Chen, "Maintaining and Evolving GUI-
Directed Test Scripts," in IEEE 31st International Conference on
Software Engineering, 2009, pp. 408-418.

[4] A. Holmes and M. Kellogg, "Automating Functional Tests Using
Selenium," in AGILE 2006, 2006, pp. 270-275.

[5] C. Fu, M. Grechanik, and Q. Xie, "Inferring Types of References to
GUI Objects in Test Scripts," in International Conference on Software
Testing, Verification, and Validation, 2009, pp. 1-10.

[6] W. Chen, T. Tsai, and H. Chao, "Integration of Specification-Based
and CR-Based Approaches for GUI Testing," in 19th International
Conference on Advanced Information Networking and Applications,
2005, pp. 967-972.

[7] A. Ruiz and Y. W. Price, "GUI Testing Made Easy," in Testing:
Academic and Industrial Conference - Practice and Research
Techniques, 2008, pp. 99-103.

[8] A. Ruiz and Price Y. W., "Test-Driven GUI Development with
TestNG and Abbot," in IEEE Software, 2007, pp. 51-57.

[9] A. M. Memon and M. L. Soffa, "Regression Testing of GUIs," in
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2003, pp. 118-127.

[10] Z. Yin, C. Miao, Z. Shen, and Y. Miao, "Actionable Knowledge
Model for GUI Regression Testing," in IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, 2005, pp. 165-168.

[11] Ali Hosseini-Khayat, Yaser Ghanam, Shelly Park, and Frank Maurer,
"ActiveStory Enhanced: Low-Fidelity Prototyping and Wizard of Oz
Usability Tool," in Agile Processes in Software Engineering and
Extreme Programming, 2009, pp. 257-258.

[12] Theodore D. Hellmann. (2010) LEET (LEET Enhances Exploratory
Testing) - CodePlex. [Online]. http://leet.codeplex.com/

