On the Success of Empirical Studies in ICSE
(What should be changed?)

Carmen Zannier, Grigori Melnik, Frank Maurer
University of Calgary, Canada

ebe.cpsc.ucalgary.ca/ebe
Empirical studies are valuable for building a body of knowledge on software engineering (techniques, processes, products …)
Motivation & Context

- Research question:
 Are we getting better in conducting empirical research in SE?
- Context: ICSE
Hypotheses

H_1: The **quantity** of empirical evaluations performed has increased over 29 years of ICSE proceedings

H_2: The **soundness** of empirical evaluations has improved over 29 years of ICSE proceedings

- very basic criteria for soundness:
 - where appropriate, well-defined hypotheses stated
 - 4 parameters:
 - Study Type
 - Sampling Type
 - Target and Used Populations (do these match?)
 - Evaluation Type (self-confirmatory / independent)
 - legal (proper) use of a method of analysis
Sampling

- Target population – all accepted peer-reviewed ICSE publications (technical papers and experience reports) (N = 1227)
- Used population – accepted peer-reviewed ICSE publications
- Sample – stratified random (n = 63) into 9 clusters of 3 papers (covering 3 year periods)
- For Hypothesis 1, we used 2 groups:
 - early years of ICSE (1974-1990)
 - later years of ICSE (1991-2005)
Procedure

- Independent evaluation
- Investigator 1 examined each paper from the sample
 - contain evaluation?
 - is evaluation sound?
- Analysis replicated internally
 - blind evaluation by investigator 2 and 3
 - resulted in validation and more precise formulation of study types
 - 12/63 randomly assigned papers used for validation
Results – Hypothesis 1 (Quantity)

- Null hypothesis is rejected at level 0.05

- Thus, we conclude that empirical evaluation in software engineering field is becoming more common.

- Maturation of the field?

ICSE lifespan (27 conferences)

Number of papers per cluster with evaluation components
Results – Clarity of Evaluation Properties

<table>
<thead>
<tr>
<th>Study Type</th>
<th>AS == UD</th>
<th>AS != IS</th>
<th>AS == IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number Agreements, Disagreements, Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Type</td>
<td>2</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Target & Used Population</td>
<td>10</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Sampling Type</td>
<td>5</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Study Type</td>
<td>18</td>
<td>5</td>
<td>21</td>
</tr>
</tbody>
</table>

AS = Author-selected, IS = Investigator-selected, UD = undefined
Hypotheses are not stated explicitly

- Except for 1 study in our random sample, none of the examined studies that should have stated hypotheses or propositions (17) contained hypotheses clearly stated.

- This is despite published guidelines and numerous recommendations by empirical experts.
Results – Sampling Type

Sampling Type: Parameter Totals of Sampled Papers with Evaluation Component

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenience</td>
<td>5</td>
</tr>
<tr>
<td>Critical Case</td>
<td>0</td>
</tr>
<tr>
<td>Investigator Selected</td>
<td>30</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>0</td>
</tr>
<tr>
<td>Purposeful</td>
<td>5</td>
</tr>
<tr>
<td>Quota</td>
<td>0</td>
</tr>
<tr>
<td>Self-Selected</td>
<td>0</td>
</tr>
<tr>
<td>Simple Random</td>
<td>0</td>
</tr>
<tr>
<td>Snowball</td>
<td>0</td>
</tr>
<tr>
<td>Stratified Random</td>
<td>0</td>
</tr>
</tbody>
</table>

The chart shows the distribution of different sampling types, with Investigator Selected being the most common, followed by Purposeful and Convenience.
Results – Major Concern 1

Though we've seen more empirical studies done, most of them are self-confirmatory in nature!
⇒ 5 criteria of soundness are not improving,
⇒ Hypothesis 2 is rejected (qualitatively)
Results – Major Concern 2

Replication anyone?

Possible reasons:

- ICSE reviewers consider the "excitement factor" to draw the crowd and replicated studies may not rank highly unless they are contradicting some known data.
- Replicated studies are simply not being done.
 - similar situations in journals (informal evaluation).
Towards a Family of Studies of Quality of ESE

 - controlled experiments over last 10 years
 - scope: major conferences + journals + magazines
 - findings are similar to ours:
 - prevalence of academic studies,
 - hypothetical (not real-world) applications,
 - reporting "vague and unsystematic"
 - another problem - a lack of consistent terminology
What Does This Mean to Us as a Community?

- Researchers recognize a need for empirical evaluation to get their papers accepted (at ICSE)

- However, the soundness of empirical evaluations has not improved over 29 years of ICSE
 - self-confirmatory studies dominate
 - no replication
 - hypotheses are not specified explicitly
 - non-random sampling
 - inconsistent definition of study types

- Does this mean we (researchers) are paying a lip service to empirical evaluation?
Food for Thought

- Problem space is so huge, that it is hard to come up with valid results in industrial time frames feasibly
- "Over the years I've matured from quantitative to qualitative" (Vic Basili)