UNIVERSITY OF CALGARY

Communicating Domain Knowledge through Example-Bmni5tory Testing

by

Shelly S. Park

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
CALGARY, ALBERTA

September, 2011

© Shelly S. Park 2011



UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, aodmenend to the Faculty of Graduate
Studies for acceptance, a thesis entitled "Comnatinig Domain Knowledge through
Example-Driven Story Testing" submitted by Shelgriin partial fulfilment of the

requirements of the degree of Doctor of Philosophy.

Supervisor, Dr. Frank Maurer, Department of Compute
Science, University of Calgary

Dr. Armin Eberlein, Department of Computer Sciefce
Engineering, American University of Sharjah

Dr. Daniela Damian, Department of Computer Science,
University of Victoria

Dr. Xin Wang, Department of Geomatics Engineering,
University of Calgary

DOCTORAL STUDENTS ONLY External Examiner (or
External Reader), Dr. Robert Biddle, School of Catap
Science, Carleton University

Date



Abstract

This dissertation investigates the uses of Stost Deiven Development in Agile
software development teams. There are three ms@areh questions: 1) What problems
are faced by Agile teams in practicing Story Tesv&nh Development? 2) Investigate the
relationship between stories, teams and defecta/Hajt are the factors that lead to
successful adoption of Story Test Driven Developtém this dissertation, we explore
these questions using four case studies.

The main contribution of this research is to appho&tory Test Driven
Development as a knowledge building process rdttar as a software testing process.
The studies suggest that Story Test Driven Deveopins particularly useful for
communicating domain knowledge between customensiéh experts) and the
developers. The automated testing aspect of the t&sts allows developers to implicitly
learn and directly validate their understandinghef domain knowledge and the
requirements. Story tests are not a software tgsbiol, but a validation tool about how
domain knowledge and other requirements shouldnipéeimented in software.

In addition, we discovered that the main bottleniedke successful adoption of
Story Test Driven Development is the customer pigadtion. Story Test Driven
Development is a way for customers to engage itwsoé product creation in a much
more direct way. There should be a community otrdoutors and personal rewards for
contributing the story tests. The contributors bitselfish altruism” in their motivation
for participation. The success of Story Test Drilavelopment is not in producing

better software testing methods but in fosterirgagbmmunity of contributors.



Acknowledgements

I would like to thank my supervisors, Dr. Frank Mauy Dr. Armin Eberlein and
Dr. Daniela Damian for their invaluable feedbadcleit support and advices.
This research is supported by following scholarslaipd grants. | would like to
thank them for their financial support.

* NSERC Postgraduate Scholarships

» iCore PhD Scholarship

» Departmental Research Awards

* University of Calgary Graduate Travel Grants

* Queen Elizabeth Il Doctoral Scholarship

» Agile Academic Grant

* Alberta Graduate Scholarship

Finally, I would like to thank my parents for theincouragement.



Related Publications and Presentations

Park, S., Maurer, F., Eberlein, A., Fung, T-s.,.1@0Requirements Attributes to
Predict Requirements Related Defectd! M Annual International Conference
Centre for Advanced Studies Research, Toronto, dzriéov.7-10, 2010

Park, S., Maurer, F (2010) A Network Analysis c&l&tholders in Tool Visioning
Process for Story Test Driven Development, IEEEQCE 2010 15 International
Conference on Engineering of Complex Computer 3ysté&t. Anne’s College,
Oxford, United Kingdom, March 22-26, 2010

Shelly Park and Frank Maurer, A Literature SurvayStory Test Driven
Development. Proc. of 11th International Conferemcé\gile Processes and
eXtreme Programming (XP 2010), Trondheim, Norw&ji ®

Park, S., Maurer, F (2009) “Communicating Requiretidomain Knowledge in
Executable Acceptance Test Driven DevelopmentPrioc. of 18' International
Conference on Agile Processes and exXtreme Prognagn(XiP 2009), Pula, Sardinia,
Italy, pp. 23-32

Park, S., Maurer, F. (2009) “The Role of Bloggingdenerating a Software Product
Vision”, In CHASE 2009 workshop, Collocated with*3hternational Conference on
Software Engineering (ICSE 2009), Vancouver, Canada

Park, S., Maurer, F., (2009) “AP Jazz: Integragymchronous Distributed Project
Planning with Executable Acceptance Test Drivenddgyment for Agile Software
Teams”, IBM Jazz Event at 31st International Coeriee on Software Engineering

(ICSE 2009), Vancouver, Canada, May 19, 2009



Park, S., Maurer, F (2009) “Communicating Requirenizomain Knowledge in
Executable Acceptance Test Driven DevelopmentBrioc. of 18' International
Conference on Agile Processes and eXtreme PrognagniXiP 2009), Pula, Sardinia,
Italy

Khandkar, S., Park, S., Ghanam, Y., Maurer, F. 920BitClipse: A Tool for
Executable Acceptance Test Driven DevelopmentPrioc. of 18' International
Conference on Agile Processes and eXtreme PrognagniXiP 2009), Pula, Sardinia,
Italy, pp. 259-260

Wang, X., Ghanam, Y., Park, S., Maurer, F. (200%ifig Digital Tabletops to
Support Distributed Agile Planning Meetings”, IroBrof 18" International
Conference on Agile Processes and exXtreme Prognagn(XiP 2009), Pula, Sardinia,
Italy

Hosseini-Khayat, A., Ghanam, Y., Park, S., MaulFei(2009) “ActiveStory
Enhanced: Low-Fidelity Prototyping and Wizard of Qzability Testing Tool”, In
Proc. of 18 International Conference on Agile Processes artcee)e Programming
(XP 2009), Pula, Sardinia, Italy

Park, S., Maurer, F. (2009) A Network Analysis afli@e Forum Discussions on
Executable Acceptance Test Driven Development, &lsity of Calgary, Department
of Computer Science, 2009-929-08, May 12, 2009

Park, S., Maurer, F. (2009) "A Network Analysis@rfiline Forum Discussions on
Executable Acceptance Test Driven Development"hfieal Report, 2009-929-08,

University of Calgary, Department of Computer Scen

Vi



Park, S., Maurer, F. (2008) “The Requirements Adusion in User Stories and
Executable Acceptance Tests”, Agile 2008, ToroG&nada

Park, S., Maurer, F. (2008) “The Application of Muhodal Test Execution Using
Fitclipse”, Agile 2008, Toronto, Canada

Park, S., Maurer,F. (2008) “Multi-modal Functioff@st Execution”, In Proc. of™d
International Conference on Agile Processes andeeX@ Programming (XP 2008),
Limerick, Ireland, pp. 218-219 (Acceptance Rate%24

Park, S., Maurer, F. (2008) “Benefits and ChallengieExecutable Acceptance
Testing”, In Proc. of APSO 2008 Workshop, Collocatéth 30" International
Conference on Software Engineering (ICSE 2008)yzigi Germany, pp. 19-22
Ghanam, Y., Park, S., Maurer, F. (2008) “A Testven Approach to Establishing &
Managing Agile Product Lines”, In Proc. of th8 Software Product Lines Testing
Workshop (SPLIT 2008) in conjunction with SPLC 200Bnerick, Ireland, pp 151-
156

Nehring, K., Park, S., Maurer, F. (2008) “Leveragthe Jazz Platform for
Developing an Agile Planning Tool”, Infrastructo Research in Collaborative
Software Engineering 2008 (iReCoSe 2008), in Cartjon with FSE 2008, Atlanta,
Georgia, USA

Park, S. (2008) “Multi-modal Acceptance Testinggike Alliance Functional
Testing Tools Workshop, Toronto, Canada, Aug 2008

Park, S., Maurer, F. (2008) “The Requirements Adusion in User Stories and

Executable Acceptance Tests”, Ideaca Calgary, 8u2Q08

vii



* Park, S., Maurer, F. (2008) “The Application of Muhodal Test Execution Using

Fitclipse”, Ideaca Calgary, Jul 18, 2008

viii



Table of Contents

F Y o] o1 oY= | I == Vo = TSP ii
Y 013 1= o! ST PP PRPPR PP iii
ACKNOWIEAGEMENTS ... e e e e nrnrnene iV
Related Publications and Presentations .......cccccouiiiiieiieieieiniiiie e %
TabIE Of CONLENTS ...t e e e e r e e e e e e e iX
LISt Of TADIES ... e e Xiii
List of Figures and HUSEFatiONS ..........uuieiieeiee e Xiv
List of Symbols, Abbreviations and NOMeNClature . ..........uvvveviiveiiiieiiiiieiiiiiniinn. XV
CHAPTER 1: INTRODUCTION ......uitiiiiiiiiiie s eeeeeeaeeeesaiieseeeeeaeeeeeesasnnnnseeesesns 1
I [ oo To [N ox (o] o TR TP PTPPPPPPPPPPPP 1
1.2 DEFINITIONS ... e eee ettt mem e e e e e e e e e e e e eeeeee e 1
1.3 A Brief Introduction to Agile Methodologies................oooviiiiiiiiiiiiiiiiiieiiieeee. 3
1.3 Research in Story Test Driven DeVelOpMENT ... 6
1.4 Problem StatemMENT..........eeeiiiiiiiiie e 8
1.5 ReSearch QUESTIONS........cciiiiiiiiit oo e e et e e e e e e e eeeraasrneeas e e e e e e eeeannns 9
1.6 Organization of the DISSEMatiON .........cceeeeririiriiriiieee e 10
1.7 Contribution to the Academic Body of Knowledge............ccccccvvvvvviiiiiiiiivnnennne. 11
CHAPTER 2: LITERATURE SURVEY ...ttt 14
2.1 Theory of ManagemeENnt...........c.ooeiei s s e s ssenenenes 14
P22 I R 1= 1Y/ (o £ o P PP 15
2.1.2 Lean ProdUCHION. .......coooii oottt ae e e e e e e ee e 17
2.1.3 Comparison of Two Management Theories ..., 19
2.2 Requirements Engineering from the Agile Per$pec. ..., 20
2.2.1 Different Agile Methodologies...........coueiuiiiiiiiiiiiiiiiiiiiiiiieeees 22
2.2.2 Agile Team Organizations..........cooooccoccrieeiie e 23
2.2.2.1 Team Organization in Extreme Programming.............ccccceeeeeeeaennns 23
2.2.2.2 Team Organization iN SCIUM ..........cceaeeeaeieieeeee e 23
2.2.2.3 Team Organization in Lean Software Develapm.............ccccceeeeee.e. 25
2.2.3 Requirements Artefacts .........ooooo oo 26
2.2.3.1 Stories in Extreme Programming................eeeeeeeeeeeemmemnennennnnnennnnnnnns 27
2.2.3.2 StOrES IN SCIUM ....oiiiiiiee e 28
2.2.3.3 Stories in Lean Software Development co .. ..ueeveeviiiiiiiiiiiiiiiiiiiees 29
2.2.3.4 Requirements Artefacts in Traditional SaeftevEngineering............... 30
FZC T | SRR 32
P ) (0] VN =T £ PP UR PP PUPPPPPPPPRTN 34
2.4.1 Story Tests from BuSiNeSS PerspectiVeS e coveeeeeeeeiiiiiiiiiiieiininenenn 34,
2.4.2 Story TestS @S EXAMPIES.........uuuitmmmmmmmnseseaneennsissessasssesssesssesee e e e s snseesens 35
2.4.3 Story Tests as a Project Management TOO! e .ocovveveieiiiiiiiiiiiiiiiiieiieeee 36
2.4.4 Story Tests as a Quality ASSurance TOQl....ee.ocovvvevvieiiiiiiiiiiiiiiiiieeeeeeee, 36.
2.4.5 Story Tests from Different Perspectives..........uuuevvvevvevvvvviviiiiiiiiiiininnne. 37
2.5 Literature Survey of Story Test Driven Devel@im................uuevvviviviiiniiimininnnn, 40
2 T T O 01 PP PRPPPRPRTRTI 42



2.5.2 TIMC it s et e e e e e e e e e e 43

2.5.3 PROPIE ..t 45
P oY [T BT o | o PP 49
2.5.5 TeStNG TOOIS ...ccciiiiiieieiee e 50
2.5.6 What to Test in Story Test Driven Development.............ccccoeeeeeeieeneeneen. 52
2.5.7 Test AULOMALION ISSUES ......cciieeiiiieeeeeee ettt e 53
2.6 Analysis of the LIterature SUIVEY ........ceeeuiiiiiiiiiiiiei i seenenes 55
2.7 SUMIMAIY Lottt ettt e e et e et e et e e e e e e et e te b ra e e e e e eeeeeneeessbnaaneeeeas 55
CHAPTER 3: RESEARCH APPROACH ...ttt 6.5
3.1 ResSearch QUESTIONS........uuuiiieieie s cmemmmmm oo e e eeeatis s e e e e e e e eee e e e e e s eeeneeeeessann s 56
3.2 RESEAICh MEthOdS. ... ... 60
Be2.1 SUIVBY .t e ettt e e ettt e e e e e e e e e e e e rn s 62
3.2.2 CASE STUAY ....uuuuuiiee s mmmmmmm e e 63
.23 EXPEIMENT .ottt e e et e et e e e e et e e e et e ettt et e e e e e e e e eeeneeaeaaaaaaaaaas 64
CHAPTER 4: PROBLEMS WITH PRACTICING STORY TEST DREWN
DEVELOPMENT ...ttt sttt e e e e e e een e 65
4.1 Problem StatemMENT.........ccooiiiiiiiereee it e s 65
A oY= (o (o {010 o o I PPPPPPPPPPP 67
4.3 ReSearch MethOdS. .......c.ciiiiiiiiiieeeeeee e e e 69
4.3.1 Grounded TREOIY......cccoiiiiiiii e 69
4.3.2 NetWork Centrality .........ooooeiiiiiii e 70
4.4 RESEAICH DBSIQN ..uuuuuiiiiiiiiii e st eeebeataebeeebeaeeabesbasassasssssssmnnmneesseseeseeees 73
4.4.1 Important Categories of Story Test Driven @egment..............ccccvvvvvevnnnnns 73
4.4.2 The Research Design for Degree Centrality...............uevvvvviiiviiiiiiinininnnin. 74
4.4.3 The Research Design for ClUSter ANAlYSiS. e« coveeriiieiiiiiiiiieieeeeeeeeeeeeeeen 75
A5 RESUILS. ...ceiiieiii it e e e e e e e e e e e e 76
4.5.1 COUING RESUILS. .....uuuiiiiiiiiiiiiiiimmmmmms s s s s s es e s e e e s e e e e e ssneesnnnnnnes 76
Team INVOIVEMENT ... e 76
AOPLION .o e 77
TeSt MAINTENANCE ......ceeeeiiiii e e eee et e e e e e e e s e e e e e e eee e e e eeaaaeeees 77
ECONOMIC VAIUB......coiiiiiiiii e ettt e e e e et e e e e e e e e e aeennnnees 77
REQresSioN TESHNG.......cooiiiiiiiiiiiiieeemmmemse ettt eeebeeeeeeeeeeebee e beneaebeeennnnne e 78
Compatibility/INtegration..............ooooi i 78
USADIIEY ... 78
(70 110 0181 o o%= 1o o 1SS 79
Business vs. Technology SOIULIONS .........cooieiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e 79
Knowledge Representation............ooooo oo eeeeeoriiiiiiiiiiiiiiieiieiieeeeieiiiee 79
NOtAtION/LANQUAGE.......ceeeiiieieieeeieeeee ettt ettt ettt ee e teeaeseeesesseebeeeneeeas 80
Graphical Visualization ..., 80
N o 11 (T ] = OSSPSR 80
COMPIBLENESS ...ttt eemeeee ettt e et ee ittt e e aeeteeetetasbessesbessbeneeneeeeas 81
Distributed TeStS ... .o 81
Different Perspectives/SKillS................comeeveeieniiiiiiiiiiiiiiiiiiieeeee. 81
Exploratory vs. Test AULOMALION .........ciiiimmmmmm e 82.
WOTKIIOW ..o 82



JAY 015 1 = o3 £ [0 o U U 82

TeIMINOIOGY . ... e 83
REPOIMING oo e 83
Validation vS. VerifiCatioN...........cc.uuviiieeeeiiiiiiiee e 83
4.5.2 Degree Centrality ANAIYSIS........coooiviiiirinissse s s snees 84
4.5.3 Cluster Graph ANAlYSIS......coooiiiiiiimce ettt eeeeee s 87
v 1] o [ o= 1[0 o IR U U 89
4.6.1 Categories of Issues in Story Test Drivendd@yment................cevvvvevreennene. 90
4.6.2 Degree Centrality ANAIYSIS........cooiiiiiiiiis s s snees 91
4.6.3 ClUSTEr ANAIYSIS. .. iiiiii i cmmmmm e nenenes 92
4.7 Threats to ValIAIty ..........uuueiiiii s s s sssnenennnnnenes 93
A8 SUMIMAIY ...ttt ettt rr e e e e e ettt tas e r e e e e et e eesbb e n e e e eeeeee s bnmnnassaaaeeeaeeeennns 94
CHAPTER 5: STORIES AND DEFECTS ... ..ottt Q5.
5.1 Problem State@mMENT..........uuuuiiiiiiiiieee e 95
5.2 BACKGIOUNG. ...t e e e e e e e e e e e e aae e e e e a e eas 98
5.2.1 DefeCt PrediCtion ......... ... ieeeeee et eeee e eee s see e eneneaeeeas 100
5.2.2 NEtWOIK ANAIYSIS ....vuviiiiiiiiiiiiiiitcmmmmme s e 101
5.3 .CASE StUAY ... et n e ne e e e e aeaeee e 102
5.4 RESCAICH DESIGN ....eeieiiiiiiiiiiiiiiitieeiee e e ee ettt e e ettt et e eeeaeeaeeteesseeeeneeaaeeaaeeeas 107
5.4.1 POINt VAriabIes ......ccovviiiiiiiii st 108
5.4.2 Aggregate VariabIes ..............uuuue e ettt 109
5.4.4 NUIl HYPOTNESIS ...ttt ee e e e e 111
5.4.5 NEtWOIrK ANAIYSIS ...uvvvvuiiiiiiriniiinsimmmmm s s s ssssesssssss e s s e es e e s esssnsnnes 112
5.5 RESUIL ..o et r e e 114
5.5.1 Correlation ANAIYSIS..........ccoeviiet s s s s s e e e enseesenes 114
5.5.2 Regression ANAIYSIS ........ooviiiiiiis e ettt enene e 118
5.5.3 Data SPHING....cceee e 118
5.5.4 Networks of People and StOries .......cccoeeeviiiiiiiiiiiiiiiiiiiiiiiiiiieeieiieienee 120
5.5 DISCUSSION ...ttt e ettt e et e e e e e e e et e e e e e e s bbb e e e e e e ssnbnnreneeeeeeens 122
5.5.6 Indirect Stakeholders and Related Stories.........cccccveeeiiiiiiiiiiiiiieeeeenns 312
5.5.7 NEtWOIrK ANAIYSIS ...vvvvviiiiiiiriiiiinsmmmmm s s s ssssesesssas e s s e es e e s ssssnnnnes 124
R S o £=To [Tox 7= o 111§V PPI 125
5.6 ThreatS t0 Validity ...........uuviiiiiiiiiiiiiiiieiiiiieiiiiieiieiieieaveeeeeeee e reesreeerneeeeeeeeeees 125
5.7 SUMIMAIY .ottt e ettt e e e e e e et e et e e e e e e e eeeneneaebana e e eeaas 128
CHAPTER 6: A CASE STUDY OF SUCCESSFUL PRACTICE....c....ccevvveeeiiinnne. 130
6.1 Problem StatemeENt...........uuueueiiiiite e 130
6.2 RESEAICH DESIGN ....eeiiiiiiiiiiiiiiiiiteecee et ettt ettt ettt et et e ae e te e e eeeeneaaaeaaaeaeas 131
6.3 The PAS PrOJECT. ...ttt e e e e e e eeeeeeeas 132
L @] =T oY 1[0 o P 134
6.3.1 Choose the Requirements Specification Taohfthe Customer’s
190 2= V] o 1RSSR PPN 135
6.3.2 Communicating the Business Domain Knowledge..................cuveveininnnes 136
Making the Requirements Specification Executable.................cccccii, 139
5.5 DISCUSSION ...ttt eee e e ettt ee e e et e e e e e e st e e e e e e e e s s bbb e e eeeeensnbnnreeeeeaeeens 141
6.6 ThreatS t0 Validity ............ueiuiiiiiiiiiiiieiiiiiieeiiiiee et rrerne e eeeeeeees 142



6.7 SUMIMAIY ...ttt ettt e e e e e et e et a e e e e e et e ee bbb e e e e e e eeeenennessan e eeeeas 143

CHAPTER 7: WHAT IS THE BIGGEST OBSTACLE? A CASE SV .................. 145
4% 0 To [ o 1o o PO TSP PTOPPTPPPPPP 145
7.2 BACKOIOUNG .....uuiiiiiiiii s e e e e e e e e e e e e e e e e e e e e e e nn e s a e e ee e e eas 146
7.3 ODSEIVALION ...ttt e e e 151

7.3.1 Ownership of the Story TeSS .....uuiiimccree e, 151

7.3.2 Community Of CONtHDULOIS ............. vt eeeneeenees 154
A 1o 71 o 1SRRI 155
7.5 ThreatS to Validity ...........oeeiieeiiiiiiiieiiei et ee e e ee e 157
7.6 SUMIMAIY ...ttt ettt e e e et et e et e e e e e e et e ee bbb e e e e e e eeeenemeensan e eeeeas 157

CHAPTER 8: SYNTHESIS OF FINDINGS .......ouetiiiiiiiiiiiiieeee e e e 158
S0\ = 1T T I =0 1= 158
8.2 Examples Of the DOMAIN............oooio s s snennne 159
8.3 Story Tests as Knowledge REPOSILONY ... o e eerrererreerereieeeeeiereeeeeeeeeeeeenens 162
8.4 Rewards and MOUIVALION ............oiiiieeeeeeniiiiie et 165
8.5 Community Of CONLIHDULOIS........ccvviiit et 168

CHAPTER 9: CONCLUSION ....coiiiiiiiiiiiitiie ettt 173
9.1 Summary Of FINAINGS.......cooiiiiiiiiiiiii ettt e e e 173
9.2 FULUIE WOIK ....eeeeeiiiiee e e et o e e ettt e s e e e e e e e ee bt e s eenanaeeeeeennnnnnnns 174
9.3 Main CoNtrBDULION. ......ciiieeiiii e e e e e e e e e e e eeeeeeaanaans 175

REFERENGCES ...ttt ettt e e e e e e e e st s e e eaeeens 176

APPENDIX |: ETHICS APPROVAL ..ottt 197

APPENDIX II: COPYRIGHT RELEASE FORM ......cuuiiiiiiieiiiiiiiiieieeee e 199

APPENDIX II: INTERVIEW QUESTIONS ...ttt 203

Xii



List of Tables

Table 1: Research Questions and Summary of OUtCOMES...........cevvvevvrererrrererenennnns 58
Table 2: Ranked Order of Important Concepts Usidge=Betweenness Algorithm..... 88
Table 3: Correlation coefficient between the sfiedistory attributes and the number

(0] 0 [ =T o 1SR 117
Table 4: Regression ANAIYSIS............uuiwcumemeeverrrerieireririirnrenirrneeierrerer e 117
Table 5: Data Splitting Regression and Correlafioalysis for Number of Indirect

StAKENOIAEIS ... ..t a e 120
Table 6: Data Splitting Regression and Correlafioalysis for Number of Related

] (0] [T TP UP R TPTPPOTPPPPP 120
Table 7: Correlation Analysis on the Network Measuiior Stakeholders and Related

S (0] [ SR 122
Table 8: An Example Snapshot of Story Test Defmiti............cccooeeeieieiiieie, 813

Xiii



List of Figuresand Illustrations

Figure 1: A Fit document showing how the testsspecified. The green cell means
the test passed .The red cell means the test failed............ccccvvvvviiiiiiiiiiiiinnes 33

Figure 2: Summary of Studies and Emerging Resd@umstions ..., 59

Figure 3: The graphs showing how the graph wastoamed after iterations of Edge
Betweenness algorithm. The left graph is the ihgraph, and right graph is the
final graph showing that only three categories @B ...............ccccceeviiiiiiiniininnnns 88

Figure 4: The nodes inside a large circle are ¢rereetwork for the node located in
the middle labelled as ego node. A global netwefkns to all the nodes in the
0103 (1 = PP 102

Figure 5: A diagram explaining the business progessved in a battery facility ...... 138

Figure 6: A time-series graph showing the percenti#gtory tests succeeding at the
end of each sprint. 0% success rate was due & aumation problem at the
time rather than any serious software malfunctian...............ccccccvvvviiiiiiiinennnn. 139

Xiv



Symbol
API

AT
CASP

DOI

EATDD
GUI
IDE
STDD
QA

ROI
RUP

Ul

XP

List of Symbols, Abbreviations and Nomenclature
Definition
Application Programming Interface
Acceptance Tests
Critical Appraisal Skills Programme
Diffusion of Innovation

Executable Acceptance Test Driven
Development

Graphical User Interface

Integrated Development Environment
Story Test Driven Development
Quality Assurance Analyst/Engineer
Return on Investment

Rational Unified Process

User Interface

Extreme Programming

XV



CHAPTER 1: INTRODUCTION

1.1 Introduction

This dissertation investigates the uses of Stost Deiven Development in Agile
software development teams. Story Test Driven Dmpraknt (STDD) or Executable
Acceptance Driven Development (EATDD) is a way afenunicating requirements
through automated tests. It belongs to the Agifexsse engineering methodology and
its purpose is to communicate requirements moeztdely using specifications that can
be automatically tested against the code. Curre8tlyry Test Driven Development is
still in its formative stage and many ideas ara@giut forward by the community. This
concept is called by many names - customer te€t8][Bunctional tests [K11], story
tests [K11], executable acceptance tests [K11jngkerdriven development [Mall],
scenario tests [KO3] and specifications by exarfiptd 1] among many more. This
dissertation will refer them asgory testandStory Test Driven Developmenhere story
tests are the artefacts for communicating requirgsnand Story Test Driven
Development is the process of using these artefadtgilitate the software

development.

1.2 Definitions

Before we begin, we need to introduce the follonkeyg terms as they will be
used often in the dissertation. They have spegiBanings in Agile software
engineering. Therefore, we need to make sure hlegetterms are applied within the

context of Agile software engineering.



Acceptance Test: Another name for Story Test. These tests are wurlite
customers to convey the software requirementdanra of tests that can
either pass or fail. The developers create thenaatied tests to show that
the code passes these tests according to the weynoers specified them.
Business Experts (Domain Experts): The person who has the customer’s
domain knowledge. They are often just referredstoustomers.

Customer: People who are responsible for representing theusets
and/or sponsors who are paying for software deveéop. Or they are the
actual end-users and/or sponsors who are payirthdsoftware
development. They may also refer to any stakehslatio are not part of
the development team. They are responsible fomngrthe story tests.
Developer: They are responsible for producing software. They a
responsible for writing the code that automatesstbey tests and passing
the story tests.

Executable Acceptance Test: Another term for the automated story tests,
These are acceptance tests with the executableost Often people just
called them acceptance test for short.

Executable Acceptance Test Driven Development: Another term for
Story Test Driven Development. It is the procesasiig story tests
facilitates the software development. The customeite the story tests
and the developers write the code that can passtdhetests.

Story (User Story): The user story is a feature that can be implemeanted

software written from the customer’s point of vidivcan contain



functional and non-functional requirements. Eacinysis estimated by the
developer who will implement the feature. See thtaited discussion on
its definition in Chapter 2.4

» Story Test: These tests are written by customers to convegdftevare
requirements in a form of tests that can eithes padail. The developers
create the automated tests to show that the catepthese story tests
according to the way customers specified them.

» Story Test Driven Development: It is the process of using story tests
facilitates the software development. The customeite the story tests
and the developers write the code that can passtahgtests.

* Test Driven Development: A software development process where the
developers write the tests first then write theectitht passes the tests. The

process usually refers to the unit tests.

1.3 A Brief Introduction to Agile M ethodologies

Agile methodologies have grown and matured verglduiwithin the last decade.
Story Test Driven Development is a new requirementgneering technique within
Agile software engineering. We collected the comitytsvision for the Story Test
Driven Development in Chapter 4, but it still lacke foundations to solidify what Story
Test Driven Development is and how one can pradti&ory Test Driven Development
is not about competing with traditional requirenseangineering methodology. Rather,
the focus is on accommodating requirements engimgearethods for teams that practice

Agile methodologies and its principles. Despite samanfusion, Agile methodologies



have different management theories behind thencpies and practices than traditional
methodologies. Therefore, it is inherently diffictd compare and contrast requirements
engineering methodologies that are meant to beeappl different team organizations,
different development practices, and different gipfes.

Requirements engineering has been one of the meshderstood parts of Agile
methodologies, mainly because the Agile princigkase that their values working code
over documentations. Some people interpretedritgan that there is no requirement
engineering in Agile methodologies, because trermidocumentation, which is simply
not true. Requirements engineering is less forradland still a less researched part of
the Agile methodologies, but it has a set of thedthat guide how requirements should
be solicited. The fundamental difference betweaditional software engineering and
Agile software engineering is that Agile methodsndb approach requirements
engineering as a separate task and a separateqdtineedevelopment. Rather,
requirements engineering is embedded in the overaditice. Therefore, in order to
explain how requirements engineering works in Agikethods, we need to explain the
whole methodology. In Chapter 2, we will providenare in-depth review of how Agile
methodologies came about and how requirements eagiy is viewed within the Agile
context. However, for now, we introduce the topietty.

The methodologies that fall into Agile methodolamtegory uphold the Agile
principles as they are stated in Agile Manifestd I&

* Individuals and interactions over processes anits too
» Working software over comprehensive documentation

» Customer collaboration over contract negotiation



* Responding to change over following a plan

The Agile methodologies are designed to check atahloe through their
iterative and interactive approaches with theseggples in mind. The problem is that
people try to apply these principles selectiveltraitional methodologies, while the
traditional methods are not designed with thesecgles in mind.

There is also more than one way of doing thing&gile methodologies, as
evidenced by many methodologies that comprise g &£ ompared to other software
engineering methodologies, Agile methodologiesnameh newer. For example, the
Agile manifesto has not been formed and published 2001 [A11]. However, during
the last decade, it proliferated in the industrickly and a lot of practitioners embraced
the Agile methodologies. It is important to viewikgmethodologies as a group of
methodologies in evolution - changing as they arestantly being applied on many
different teams and projects.

Agile methodologies have some techniques that wstant hits with industry
practitioners. For example, test-driven developm®otum and iterative development,
just to name a few. The surprising part of theacass is the simplicity of these
techniques, but the benefits they provide wergifaater. One of these simple but
profound techniques is the use of stories. Stanieshe main artefacts produced for
communicating requirements. Stories contain jusugh information to start the
conversations on what needs to be developed. Ibeavwritten by anyone. At the start of
the iteration, some of these stories are chossoysised and estimated before they go

into development.



1.3 Research in Story Test Driven Development

Story tests are a set of tests that customersgeduithe developers. The
developers can make sure that they understooddhgiomers’ requirements correctly by
testing their code against these story tests. Wili€nsure that software is delivered
according to the way customer envisioned it. Howestory testing has been met with a
lot of confusion and met with limited adoption hretindustry so far. Moreover, not many
empirical studies are done on Story Test Drivendlggyment and it still requires more
scientific understanding of its process. Our regea to find out and offer a solution as
to the uses of Story Test Driven Development inddevelopment and how one may
need to practice Story Test Driven Development.

The Agile methodology is based on the assumptianhrgquirements will
constantly change and that developers must be @@ par the changes at any point in
time of the software development. Therefore, bainlg to quickly figure out how the
requirement is changed and how this reflects orctioe is important. Current research
interest in Story Test Driven Development, unliklbay Agile methodologies, evolves
heavily around tools for writing and maintainingrsttests. If the story tests fall, it
means the requirements are misunderstood by theapers or another part of the
requirements is broken due to the new changesiodbe. By writing the requirements
in a testable way that can either succeed ordhitf the stakeholders can get the state of
the software development progress automaticalngttime by running these automated
story tests. It is an attempt to apply test-dridemelopment to the requirements
specifications. Much like how xUnit tests [J11, NF11] are a vital part of the Test-

Driven Development [B02], a tool is required to@uate these executable



specifications. Therefore, much of the recent fdrass been about developing tools for
story testing [AA11].

The tools for Story Test Driven Development arduieficed by software testing
tools and testing approaches. Riding on the suafdbe test-driven development [B02],
many Agile software engineers saw an opportuniiptiegrate all stakeholders to
participate in the test-driven development proc&hks.idea behind Story Test Driven
Development is to write requirements in a testaldg to minimize miscommunication
between customers and developers. The automatithesd specifications into tests
would ensure that the implementation is verifiedtowously and let the customers know
about the implementation progress. There are cilyreeveral tools to facilitate Story
Test Driven Development, but the most popular argHi11] and Fitnesse [Fitn11].

The Agile community has identified recently thais¢ixig tools do not support
Story Test Driven Development very well [AA11]. Ookthe main problems we see is
that these tools do not have a clear focus on ptwdtlem they are trying to solve. People
wished for better tools, but the community discedethat finding the right requirements
for the new tool is actually very difficult. Theaee many conflicting ideas and wish lists
for the tool [AA11]. To find the requirements, omeist analyze what kind of problems
Story Test Driven Development is trying to solveagile software development and then
discover how a tool can help solve the problem.

It is fundamentally different to get testers totevhe test specifications and to get
requirements engineers to write the requiremendstestable form. From the testers’
perspective, even if they are thinking about tgstiom the requirements engineering

stage, their purpose of writing the tests is td famd prevent the defects at the end. From



the requirements engineers’ perspective, the per{gabout communicating the
requirements to the developers. Writing requirem@na testable way is not about
finding the location of the code defects, but comioating whether the requirements are
correctly translated into functionalities. The atbevious difference is that the people
who occupy these roles have different backgroundsrainings. People who occupy the
testing roles have different set of skills thansithevho occupy the requirements analysis
roles or customer roles. Therefore, it is importarlbok at Story Test Driven

Development from a holistic view.

1.4 Problem Statement

A fundamental research question is what is a gemtyand what can we do with
it? The dissertation is an exploration to discalifferent interpretations of story tests
and how people practice Story Test Driven Develagme order to do so, we need
better understanding of the people for whom thé&sg $ests are meant for and how story
tests benefit their software development procesAgile methodologies, the teams are
categorized broadly into the developers and custriidée developers are the ones who
write, maintain and test the code; customers ateofehe people. Story tests are
supposed to be written and maintained by the pesptefall into the customer category.
We need to figure out the main problems and chgélerthat these customer groups are

facing before we suggest how story tests shouldriiten.



1.5 Resear ch Questions
The research goal is investigate why people usey Sest Driven Development
in Agile software development. There are three masearch questions:

Resear ch Question 1: 1) What problems are faced by Agile teams in

practicing Story Test Driven Development?
Story tests are requirements that are specifiedt@stable form that can
either pass or fail. The idea of using story t&stsommunicate
requirements has been around for many years iAgihe community, but
it is having problems being adopted by practitisnanlike other Agile
methods. Tools such as Fit [Fit11]] were develofed the community is
still unsure how story tests should be implememegal life situations.
In order to suggest how story tests should be ewjtive need to collect
more information on how practitioners wrote thdior$ Tests and find out
what were some of the problems that they encouthtere

Resear ch Question 2: Investigate the relationship between stories, seand

defects.
We need to figure out the relationship between tesmbers and Agile
development artefacts such as code, defects andsstStory Tests are the
links between stories to the codes and eventuadly serve as artefacts to
discover defects through the automation of stoststéNVe need to analyze
what factors have direct correlation between theest and defects,
because these attributes may be important in tambwnderstanding of

what story tests are.



Resear ch Question 3: 3) What are the factors that lead to successfyptzmio

of Story Test Driven Development?
Story Test Driven Development is the process afgistory tests to drive
the software development. We need to understandaiteebenefits of
Story Test Driven Development that no other prastican provide. One
of the best ways to understand the uses of StasisTeto observe how
real life Agile teams adopted Story Test Driven Blepment and analyze
the motivation of using Story Tests in their deyahent process. We also
need to compare and contrast different Agile teantssee how the
differences in their organizations and processg¢sdehe overall success

of practicing Story Test Driven Development.

1.6 Organization of the Dissertation

We organized the Chapters as follows. We presenitdrature survey in Chapter
2. In Chapter 3, we discuss the research desigmemedrch methods. In Chapter 4, we
provide the survey done on the issues in Story Dasen Development. We analyzed
the Agile community’s response on what they viewéahe goals, problems and their
visions for STDD. In Chapter 5, we present a quatie case study on how
requirements can be traced all the way to the teetewd whether the social networks of
the organization has an influence in the defeeisetrin Chapter 6 and 7, we offer two
gualitative case studies of companies who pract8tedy Test Driven Development. In
In Chapter 8, we synthesize the findings. In Chapteve conclude the dissertation with

final thoughts.

10



1.7 Contribution to the Academic Body of Knowledge

The main contribution of this research is to applostory testing using examples
and think of Story Test Driven Development as aedge building process rather than
a software testing process. To elaborate, the keabye building process means
transferring the domain knowledge from the busimegeerts to the developers through a
series of domain examples that can be tested dgaids. The test ensures that the
developers acquired the necessary knowledge teeimgit the code correctly and
validate their implementation against the custospeeified tests. The examples are
collected iteratively as the development progresElesrefore, the repository of examples
will grow as the development progresses iteratiaelgl the collection of these examples
will grow over time. This process of collectingstiag and communicating their
requirements iteratively through example-drivemstests is what we refer to as the
knowledge building process.

What do we mean by example-driven story tests?d#fetified that the existing
interpretation of story tests tend to write thegtests like test cases — a set of tasks that
can either pass or fail. This view of story tes&slihe test specifications toward software
developers and software testers and these tegt$ikeaunit tests (but just using different
tools). The problem with the developer/tester-gentiew of story tests is that unit tests
and story tests eventually serve similar functidhthere is a lot of overlap between unit
tests and story tests, the team would lose the toeedintain story tests. Therefore, it is
better if the customers provide the test valuesgiekamples right out of their domain

using the formats and tools of the domain. The ligezs can extract values from these

11



examples to setup their automated tests. This & wh mean by example-driven story
tests.

Story tests are communication tool between custe@ed developers, not a
testing tool. From customer’s point of view, stéegts are their way of communicating
their knowledge. We identified that customers atelmbetter at communicating their
story tests using examples from their domain, abiaf trying to communicate them
using software testing tools. In addition, theststshould not be organized like unit
tests, which tend to be organized based on howdtle is organized. Story tests need to
be organized based on how the customers see teib@toblems. Therefore, the process
of collecting these examples turns into a knowldagi&ling process rather than a
software testing process.

In this dissertation, we present four case stuthiassuggest that story testing is a
way of communicating domain knowledge and a stesy heeds to be written in the
formats and tools of the domain. Story testingig\gile requirement engineering
practice and not a software testing practice. Véatifled that the main hindrance of
adopting Story Test Driven Development is thatdhstomers need to learn the tools of
the technology. Compared to the challenges ofrggethie customers to write the story
tests, extracting data out of the examples to vait®mated tests is relatively easy task
for developers. By using the examples of the doraaithe story tests, we not only
improve the communication between customers andldpers, but also communicate
the business context in which these software fonetities need to work. We also
identified that there needs to be rewards and ratdins for the customers to contribute

these story test. One of the best ways to do adhere is a community of contributors

12



who want to build a knowledge repository of examplenot only solves the story

testing issues, but it can also serve as docunemtatr software.

13



CHAPTER 2: LITERATURE SURVEY

In this Chapter, we present a literature survetamy Tests and Story Test
Driven Development and related background for esearch. We start by providing an
introduction to requirements engineering from arnlé\goftware engineering perspective,
followed by a literature survey on Story Test Drivigevelopment. We also give an
overview of the principles behind Agile developmant how these are reflected in the
team organization and project management. We exfiai differences in terminologies
between traditional software engineering and Agiifware engineering.

We provide a literature overview of the papers higd in the area of Story Test
Driven Development and categorize them into difiergews. We think it is important to
see how each view is different even within the Agibmmunity and we think the
categorization will highlight the different problerthat Story Test Driven Development
needs to solve. In addition, the categorizatioh kvghlight the different approaches

within the community.

2.1 Theory of Management

Agile software engineering is built on a differ@htilosophy than traditional
software engineering. It is inherently impossildertterpret and analyze Agile teams by
directly comparing them with traditional softwamegeeering teams. In order to figure
out how Story Tests fit into the Agile software d®pment process, we need to first
figure out the fundamental philosophical differenteat guide these two software

engineering methodologies.

14



There are two types of management theories thatlynaifluence the Software
Engineering methodologies: Taylorism and Lean Petidan. The difference between
traditional and Agile software engineering methodés is actually an argument about
these two different management theories. The toendit software engineering
methodologies are based on Taylorism and Agilexso# engineering methodologies are

based on Lean Production.

2.1.1 Taylorism

Frederick Taylor produced a theory of managemeitad&cientific Management
otherwise known a$aylorism.It is much better known as Fordism after its susfués
adaptation in the automobile industry by Henry Edrge principle behind Taylorism is
to apply ‘scientific methods’ to improve efficienayainly through labour productivity,
which led to mass production. In his publicati®he Principles of Scientific
ManagemenfT11] published in 1911, he states that the sofuis not in finding
extraordinary people, but in managing the inefficiethat lies in the lack of systematic
management. If his principles are applied corretityassured that extraordinary results
can be achieved even with people with little oskills. He argued that his management
philosophy can be applied by any organization.

Taylor believed that the vast majority of workers sncapable of management
[M03] and managers did not have enough control tweproduction process. He
believed that their lack of control was the mains=of the inefficiency. In addition, he

believed that workers have natural tendency to &molind and expect the same pay

15



[MO3]. Therefore, Taylor proposed a scientific aggzh to managing the processes and
workers.

The first aspect to Taylorisia interchangeable peopl&he organization needs to
find work that the worker is naturally good at andximize his/her abilities by making
him/her focus on that single task only. In additittre supervisor must provide each
worker with training and assessment based on hditleeworker does that specific
task. In turn, everyone can be replaced with amgiBeson at any time, because the
knowledge is embedded in the process, not in ttieioluals. The second aspect is to
replace the ‘rule of thumb’ work methods with s¢ifn approaches that measure the
efficiency based on what is produced and obseflied.assumption in Scientific
Management is that there is a single “best wayfd@ job, because the best method is
the one that optimizes the assessment metricsthiliideaspect is to divide the workers
into managers and workers, such that managerslaanhg work and the workers
perform the tasks as they are planned. In this weymanagers can focus on planning
only, rather than be overwhelmed with both the d4asfiproducing and planning.

In 1912, a year after his publication, the Congjeggal committee invited him to
defend his theory, suggesting that his approadehsimanizing. However, the success of
his methodology was hard to argue. The applicasfdnis methodology in labour
specialization and mass production was a huge ssicespecially how his theory was
applied successfully in Ford Automobiles. Even tfo&ordism became much more well
known to most people due to his fame, Tayloristhésactual underlying theory. Rifkin
suggests that “Taylor has probably had a greafectadin the private and public lives of

men and women of the twentieth century than angrathngle individual’[K97]. By

16



1950s, and even most people who grew up in ourstinveuld not second guess whether
there is even any other way of managing people Tlagtorism as it is engraved in our
society in how we manage people and processesdditian, it is hard to argue against
Taylorism because how could anyone argue agairishi@gtion for efficiency using
scientific approaches.

However, Taylorism has problems in modern dayoizations, especially in
software development management. Taylor used atiedist approach, which
decomposes the production into discrete procesgkgias to optimize each discrete
process. However, individual optimization of partay not always lead to the overall
efficiency as it sometimes led to overproductiomié part only and thus leading to
wasted resources. It assumes that the probleratis ahd there is only one best solution
to each part of the problem. It worked in the macturing industry at Taylor’s time
when there was little competition and the busirsaronments did not change quickly.
The tools and technologies stayed longer and didd@ome obsolete in a few years. In
short, Taylorism assumes that 1) the problem idiptable; 2) the problem is
controllable and 3) the focus should be on optitiera]M03]. When we mention
traditional methods in software engineering, weraferring to methodologies that are
based on Taylorism. An example of the Taylorisppr@ach would be the Waterfall

model [B83].

2.1.2 Lean Production
The other management theory is now known as Leadiuetion methods or Just-

in-time approach. The history of Lean managemeginsdan 1927 at Toyoda Automatic

17



Looms, which manufactured automatic power loomswveéier, the machine was
complex and difficult to maintain without very higrskilled weavers. Toyoda decided to
invite an American engineer, Charles Francis, tp hen manufacture his looms and
Francis introducethterchangeable part® the manufacturing process. Due to the
complexity of the machine design, there was no rémmmterchangeable people [PP06].
The machines required highly skilled weavers tgpkibe machines running and even
more highly skilled people to build and maintaie thachines. Therefore, Toyoda only
hired the most capable engineers to work on hiswoand focused on recruiting skilled
workers who can produce these complex parts.

In 1936, the company decided to get into the autmadusiness. To do so, the
owner toured Detroit to learn how to build carswewer, he quickly realized that it was
impossible for him to duplicate the mass productiadel for his company. His
company did not have the resources to mass pratioosands of identical parts for it to
be economical. Taiichi Ohno, a machine shop owh#reaplant, learned about Ford’s
production system, but he was rather fascinatel thiie American supermarkets
inventory system. He noticed that the shelves wkvays filled just-in-time before it
was completely empty. In 1978, he published Toystaduction System [O78], which
was based on the principle of elimination of wastd ‘autonomation’. According to
Ohno, ‘autonomation’ means automation with peoflework will stop even when
slight abnormalities are detected. All workers wohverge to fix the problem and the
assembly line will resume only when the problersdlved. It is otherwise known as
‘stop-the-line’ or ‘zero-inspection’ approach [PR0O6 means there is no sole inspector at

the end of the line who is specifically taskeditml fmistakes. Rather everyone is always

18



looking out for mistakes and solving the problestamtly as they are found. Therefore,
the system will fix mistakes before it reachesehd. In addition, the waste is identified
as the weakest point in the system that needs itoffm®ved. The assembly line is only as
good as the slowest moving part. Instead of trygngptimize every part of the system
individually like in Taylorism, Ohno wanted to ingwe one weakest point at a time. In
1990, the booR’he Machine that Changed the Woglalve another name for the

approachlean ProductiofWJR90], otherwise known as just-in-time production

2.1.3 Comparison of Two Management Theories

If you compare the two approaches between Taytoasd Lean, the Lean
approach values people. Unlike Tayloristic appreadhat emphasized interchangeable
people, the Lean approach emphasized interchareggpalik. In Tayloristic approaches,
the efficiency is obtained by optimizing the indiual parts of the process, but the Lean
approach focuses on eliminating wastes. While Tragritofocused on specialization of
labour, the Lean production implements the zerpeoton approach, which gave all
workers the power to check for the quality and stepproduction at any time instead of
waiting for their managers. The fundamental diffeeis that Taylorism assumed that
people are not skilled and need to be given sgeici§itructions on how to do their job.
Lean production assumed that people are highlleskéind everyone is capable of
producing quality work as well as detecting andgpgm-solving on their own. The lean
production approach is what Agile methods are basethese management theories
originated from the manufacturing industry. Howemrer time, these two opposing

views of management were adopted in all industries.

19



The literature suggests that in order to develppaatice that belongs to Agile
software engineering, we need to look for threedsyects: People-oriented approach
rather than an interchangeable people approadusifog on eliminating waste instead of
optimizing efficiency, people are highly skilledatithey will solve the problem on their
own without the centralized management. In the segtion, we will describe the
different interpretations of how Lean principles applied in Agile software

engineering.

2.2 Requirements Engineering from the Agile Per spective

Requirements engineering is not a distinct phageile software engineering.
Instead, requirements engineering is embeddeckinvbrall iterative development
process. The chronological view that requiremenistrbegin at the start and the
development must end with testing is a Traditigreakpective of software development.
Story Test Driven Development is a requirementsrergging approach in Agile software
engineering. Therefore, we need to discuss whairEgents engineering is from Agile
perspectives.

Highsmith states that “agility isn’t a one-shot idbat can be checked off the
organizational initiative list’[H02]. Rather, “agy is a way of life, a constantly
emerging and changing response to business tudsil@d02]. Despite some critics,
“agile organizations still plan; they just understahe limits of planning” [H02]. Anyone
who has worked on a real life software developnpeoject would know that plans are
rarely realized exactly. It is not because the peopthe team are incapable or lack

discipline. Real life projects are always facedwihforeseen and unpredictable

20



problems. If the team is dealing with a very |lapgeject, a large team, or an
experimental project with a lot of cutting-edgehieclogies, the team will more or less
hit some unknown barriers that cannot be planneddlexactly. It is inherently
impossible for individual companies to predict hihve economy will be in two years
ahead, what kind of competition they will face igesar or what will happen to their
employees in the next month. Therefore, Agile mgdasning for and reacting to the
changes.

The Traditional software engineering literaturegeggs that requirements-related
defects are a very costly problem to fix. Accordiagairley’s estimation, the cost of
fixing requirements defects may rise by 20 to &8 if the defects are fixed in the later
stage of the development [F85]. Boehm and Bastlilpat number as high as 100 times
[BBO1]. Up to 85% of the defects are estimatedame from the requirements [HFO1].
Literature states that requirements changes ardatring new requirements increase the
defect rate to about 50% [J97]. However, Agileelepment works within the
environment where requirements are constantly ahgrand it is meant to be applied in
such development projects. In an Agile developreentronment, preventing
requirements change is not the solution, but radtepting to the changes. Therefore, the
challenges associated with requirements engineergaje very complex issues for Agile
software engineering research.

In Agile software engineering, the separation ffiedent stages of the software
development lifecycle is also blurred. There aralefinite phases for requirements
engineerin, coding and testing. Rather, they amebaoed within an iteration. Agile

methods are based on iterations more than phasedtefire development lifecycles.

21



Therefore, discussing requirements engineeringsaparate topic in Agile software

engineering is often difficult and may even be isgible.

2.2.1 Different Agile Methodologies

As mentioned earlier, the Agile methodology is mag@ of many methodologies,
which came about separately in mid to late 90seamty 2000s. They all shared common
principles [A11]. Kent Beck publishdextreme Programming 1999[B99]. Schwaber
publishedAgile Project Management with Scrum2004 [S01, S04]. Cockburn
published his Crystal Clear methodology in 20044{C&nd Poppendieck et al. published
Lean Software Development in 2003 [PP03]. Dynanuftv&are Development Method
Consortium produced their methodology called DSMM1]. Feature-Driven
Development was published in 2002 although the epiwwvas devised by Jeff de Luca in
1997 [PFO2]. Ambler’s Agile Unified Process is pabked in 2011 [L11], which is a
modification of IBM Rational Unified Process [I1t] fit Agile principles. However, by
far, the most popular methodologies among thentEateeme Programming, Scrum and
Lean Development. However, recently, people dopnattice these methodologies
separately. It is hard to find an organization thdtuly devoted to only one type of Agile
methodologies. Instead, they combined the developteehniques from various
methodologies. For example, Agile methodologietuithe test-driven development
[BO2], retrospective meetings [DLO6], continuoutegration [DMGO7], user stories

[CO4], scrum meetings [SO01, S04] and code refanydit99].

22



2.2.2 Agile Team Organizations

In order to discuss who is responsible for requésts engineering, we need to
discuss the roles of the people who are involvatiensoftware development. In Agile
software engineering, the stakeholders are rougjliiged into ‘customers’ and
‘developers’. There are no strict guidelines on viddls into what category, but generally
developers deal with the technical side of softveargineering and customers deal with
the business side of the development. Howevegasdot mean there is no division of

roles in Agile software engineering.

2.2.2.1 Team Organization in Extreme Programming

In Extreme Programming, Beck divided the team filaoles: testers, interaction
designers, architects, project managers, produchges, executives, technical writers,
users, programmers and human resources [B04]. HowBeck states that XP team is
not fixed and rigid. The goal is to have everyoastdbute to the success in whatever
form they can. In addition, there is no one-to-arapping from a person to a role.
Project managers can work on architectures and@mugers can create stories — if that
made most sense for the team at the time and tegythe skills to do so. Or a

programmer can both code and architect if they hlageskills and knowledge to do so.

2.2.2.2 Team Organization in Scrum

In Scrum, the stakeholders are divided into tlwere scrum roles. The core
scrum roles are the product owner, the team armarSMaster [P10]. Schwaber defines

the product owner as “the one and only person resble for managing the Product

23



Backlog and ensuring the value of the work the tpanforms” and “maintains the
product backlog and ensures that it is visiblevergone” [S09]. This is the person who
speaks for the customers and prioritizes the tbstioso that the functionalities with the
most business value get implemented. Sometimessampenay be a product owner and a
Scrum Master.

Scrum Master is the person who is responsiblegimoving any obstacles that get
in the way of delivering the software at the endhaf sprint (which is the term used in
Scrum methodology in lieu of iteration) [P10]. Tieshe person who acts as the buffer
between the developers and any outside influenogslso enforces the rules of Scrum.

The Team is the rest of the people who actualselg the software product.
They are everyone who analyze, design, developatesdocument the software product.
The team is self-organizing. In addition, peopleowdo not belong to any of the three
roles above are called stakeholders. They maydeustomers who will pay for the
software product at the end or the actual end u€erthey may be sponsors for the
project.

Scrum likes to use the chicken and the pig analog@xplain their role division.

In the story of the chicken and the pig, a chiced a pig are trying to open a restaurant
that serves ham and eggs. In such situation, tsegre committed, but the chickens are
merely involved [K10]. The pigs are the membera &crum team who are committed to
the work in the sprint and chickens are the custerard stakeholders who do not have
the personal commitment to the work. Chickens aflnence the project direction, but
pigs need to commit to implementing the featuressiéch, the chickens, namely the

customers, cannot change their goals and intewfighethe development within the time

24



period of a Sprint. A Sprint is usually definedaageriod of two weeks to a month.
Therefore, in Scrum, the division between the dgwels and customers are their level of

personal commitment to the project.

2.2.2.3 Team Organization in Lean Software Develspm

However, Lean Software Development does not belieyust ‘self-organizing
teams’ [PP09] — a manager is still required. Podpsk writes, “when the work system
is the problem and the manager has little undedstgrof how it works or why it is not
working, self-organizing teams may help, but offilfhey have the skills to see and solve
the problem in the work system” and adds, “this magpen with mature teams, but
certainly not with every team” [PP09]. Lean Devetemnt states that line managers are
needed, but they need to have good knowledge ofitink they manage and understand
how work should get done. However, Poppendieckesritmanagers do not focus on
achieving goals and they do not tell people whatdt but rather they “focus on
improving the system whereby the organization’skngets done” [PP09]. Lean Software
Development argues that there is a need for a neaaegl workers, but the manager’s
job is about “helping everyone learn how to sedf@ms, solve problems and spread the
knowledge” [PP09].

Schmidt and Lyle compared Lean teams like a Jaad.b® musician has a
mastery of his/her instrument, but also must wortkiw the team. It is important to have
an empowered team that works in synergy and synatitp and develop leadership for
all team members [S10]. In addition, the methodglegommends that team members

be rotated into the customer’s shoes. A develofer does not have the business

25



perspective cannot develop good software. It issmough to just be told what the
customer needs. It is more important to have “ssareof intuitive, common sense grasp
of what the customer might want, although this rmester be completely substituted for
constant interaction with and feedback from reatamers” [S10]. Second, the team
members need to grow their skills constantly. Poppeek states, “deskilling workers
creates interchangeable people while upskillingkes creates thinking people” [PP06].
Therefore, Lean Software Development avoids exgbaititioning of the team into
specific roles. Rather, it is a task that each teapds to figure out on their own.

Agile methods have a lot of different interpretas on how each Agile team
decides and divides their work. There are a latasfations on how one can go about
organizing their teams. However, all of the metHodigs agree that constant interaction
with the customers is important in order to make $hat the software development is

going in the right direction.

2.2.3 Requirements Artefacts

Agile methods communicate requirements througkstésat are broken down
into smaller workable pieces. All of the Agile metls agree that these tasks need to be
broken down in consultation with the customers #eddevelopers. However, there are
also differences in how these tasks are composedt Merature uses the testory or

user storiego refer to these tasks.

26



2.2.3.1 Stories in Extreme Programming

In Extreme Programming, stories are defined aarplsing units of customer-
visible functionality” and small enough to estim#te development effort [BO4]. He
observed that usually even just implementing 5%hefrequirements would provide all
of the business benefits of the whole system;gkeaf the ‘requirements’ are just nice-
to-have’s [B0O4]. Requirements that are not estichateprioritized are not useful.
Therefore, the main difference between storiesraqdirements is that stories are
requirements that are broken down in a way thateaestimated. Beck states that
“estimation gives the business and technical petsgs a chance to interact "[B03] and
prioritize ideas that have most potential for basgvalue and technical feasibility. Beck
states that “when the team knows the cost of featiircan split, combine, or extend
scope based on what it knows about the featurdseVgB04]. Therefore, unlike
requirements that are instructions that are haddeah by the customers, stories are
tasks that can be estimated and evaluated fortbokimical feasibility and business value
by both customer and developers. Because the ¢stimand technical feasibility is
coming from the customers and the developers, patties have come to conclusion
about what is really possible and arrive at moadisgc outlook on their development
plans. There is no specific guideline on how thetsges need to be broken down, but
they must be small enough that developers can &im terms of a hours and non-

technical enough for customers to understand wigastories are about [C04]

27



2.2.3.2 Stories in Scrum

Scrum also communicates using stories. The remeinés are broken down into
stories and they are put ifRvoduct BacklogsSchwaber uses the term Product Backlog
items instead of stories in his books. He definesléct Backlog items as “a prioritized
list of functional and non-functional requiremeatsl features to be added to an existing
product” and “are granular enough to be readilyaustbod by the Scrum Team and
developed into an increment within a Sprint’[SAw]eachSprint which lasts two weeks
to a month, all stakeholders gather to figure oliictv product backlog items need to be
implemented. Mike Cohn’s explanation of Scrum ubesterm, user stories, instead of
product backlog items [C09]. Cohn defines useliasoas “a short, simple description of
feature told from the perspective of the person dsires the new capability, usually a
user or customer of the system” and “are oftentamion index cards or sticky notes,
stories in a shoe box, and arranged on walls desdb facilitate planning and
discussion” [C09]. The most important aspect of ©sldefinition of the user stories for
Scrum is that they are conversation starters,hreotietailed documentation for the
requirements. He recommends the following temgtatevriting the user stories: “In
order to <achieve value>, as <type of user>, wetwaome goal>" [C09]. He said the
most common mistakes that people make who are m&grum is that they try to write
everything down on the index cards and they arg written by a subset of business
analysts. These are often mistakes from peoplegny bring their practices from
traditional software engineering into Agile metho@snversation is more important than

documents in Agile methods.

28



2.2.3.3 Stories in Lean Software Development

Lean software development also uses the termestdo denote requirements.
Stories are “units of development that can be egéthreliably and completed within a
few days” [PPO06]. Lean software development alss uke term, product backlog, which
is defined as “a prioritized list of desirable i&&ts described at high level” [PP06]. The
main difference between Scrum and Lean Developfoetie product backlog is that
Lean Development considers backlog items as “lgrgé: bullet points”, or “epics”
rather than “stories”, because it believes thatdiied analysis must be delayed until the
last responsible moment”’[PPO06]. Instead of the tSprint as in Scrum, Lean
Development uses the term, Iteration. Therefereaich iteration, these backlog items
are broken down into more manageable stories. fnes are “analyzed by team
members who understand the customer domain artd¢heology” [PP06], which
emphasizes that generating the stories are a tifarn Poppendieck states that “a good
story is a well-defined unit of implementer workyal enough so that it can be reliably
estimated and completed within the next iteratiB®(6].

In summary, Agile methods like to break down reguents into stories. Stories
are conversation starters or reminders, ratherdhaartefact that contains complete
requirements information. Stories need to be wriltesuch a way that both developers
and customers can understand and estimate thetvodmgarties can write new stories.
Agile methods are meant to be applied in a devedstranvironment where
requirements are constantly changing, thus staresneant to facilitate such transient

business context.

29



2.2.3.4 Requirements Artefacts in Traditional SeftevEngineering

We have been frequently challenged by othershiese definitions of
requirements and stories, as these definitiongjaite different from the definitions used
in traditional software engineering. First, theidigon of requirements is much more
complex in traditional software engineering. Somvillerand Sawyer defined
requirements as [SS97]:

A specification of what should be implemented. Eneydescriptions of how the

system should behave, or of a system propertytob@te. They may be

constraint on the development process of the system
IEEE Standard Glossary of Software Engineering Teotagy defines a requirement as
[190]:

1. A condition or capability needed by a user to sa@\w@oblem or achieve an

objective.

2. A condition or capability that must be met or pessel by a system or system
component to satisfy a contract, standard, speific or other formally
imposed document.

3. A documented representation of a condition or cédjglas in 1 or 2

In traditional software engineering, requirememtgieeering has levels of requirements:
business requirements, user requirements and @umattand non-functional requirements
[WO03]. The termsystem requirementsefer to “the software functionality that the
developers must build into the product to enabérit accomplish their tasks, thereby
satisfying the business requirements” [WO03]. Regjaignts do not include design

information, implementation details, project plampinformation or testing information

30



[LOO]. Traditional software engineering also defireow these different requirements
must be gathered and written down. Compared t@thescesses, Agile doesn’'t have
specific definitions of requirements such as th&be. term, requirements, are used more
or less to describe the customer’s wishlist. Astioeed above, these differences arise
from fundamental differences in the managementrthgoocesses over people. Agile
does not believe in compartmentalizing the requéets engineering into processes or
phases. It simply starts its development from whatcustomers wanted and narrows
down the requirements through conversations andldement iteratively.

In addition, the term, stories, as used in Agiltmds seem to confuse people to
think that it is same as use cases and storieatiof&l Unified Process (RUP). RUP uses
the term Storyboard which is a way communicating a specific story ttaderstand the
overall flow and interactions” and “conception d@stion of system functionality for a
specific scenario”[SKO07]. In RUP, the term storfers to a specific scenario — one
possible narration of how the system could be uEbkis. scenario can be communicated
through a use case and RUP also has a specifielngdn how it should be written. In
Agile, the term, story, should be understood maertha start of a conversation, not as
one possible scenario of how system could be used.

Due to the underlying philosophical differencesAmen traditional and Agile
methods, people coming from traditional approachay find Agile approaches
somewhat lacking in details and oversimplified,ezsally in terms of processes. But this
is the fundamental difference: traditional methedkie processes and Agile methods

value interactions.

31



However, how does one know whether the stories@mnunicated clearly? In
traditional methods, many layers of guidelines pratesses ensure that as many errors
are found in the requirements stage as possibleeker, such processes are not in place
for Agile methods. Thus, there has been talk ofySt@st Driven Development. In
addition to the stories, STDD is a way to ensuat the requirements are implemented

correctly using test-driven development method.

2.3 Fit
Before we discuss the existing literature on stesys, we need a brief
introduction to the conventional way of doing sttegting. The original tool that started
story testing (or acceptance testing) is Fit [HitThis is the tool that inspired other tool
development and the discussion on what Story Tese® Development is. Cunningham
and Cunningham who maintain the tool and the satees
Fit is a tool for enhancing collaboration in softreadevelopment. It's an
invaluable way to collaborate on complicated probge— and them right- early in
development. Fit allows customers, testers, andnarmmers to learn what their
software should do and what it does do. It autooadlf compares customers’

expectations to actual results.

Here is a diagram of how Fit specification look®las taken from their website [Fit11]

(Figure 1).

32



r result.htm - Microsoft Word E]@"

File Edit WView Insert Format Tools 't\%ble Window Documents To Go  Help =

g &EQ YV = &M 7% - ¥ Recount 7

LE---l---1---|---1---|---3---|---4---|---5---|---a--§
[Basic Employee Compensation

For each week, hourly employees are paid a standard wage per hour for the first 40 hours
worked, 1.3 times their wage for each hour after the first 40 hours, and 2 times their wage
for each hour worked on Sundays and helidays.

Here are some typical examples of this:

‘““ ““‘ ““‘ Sem—— @g EQE:-QQH; “rr&EE PaVD

40 0 20 $800

45 0 20 5930

43 g 20 $1360 y

=)
1040 ,

=EeE = 4 il
Page 1 Ser 1 11 At 17 lm1 Col1 E

Figure 1: A Fit document showing how the tests ar e specified. The green cell means
the test passed .Thered cell meansthetest failed.

The table contains examples of how the functiordade be written. The first row tells
what kind of format is being used to write the &aliThe second row gives headers. The
remaining rows provide example values. The devetopeuld write fixtures using Fit
framework. The fixture tells Fit how to extract dand use them to write the acceptance
test (story test). Once you execute the test hatiiten using Fit fixtures, the test would
return a result (such as one shown in Figure liglating the output columns with

either green or red. The green cell means the bugue from the test corresponds to the
expected value that is specified in the specifocatilhe red cell means the output value

from the test did not correspond to the expectdaeva

33



The main problem with Fit is that it is an inctglgliuseful tool for the developers
in terms of making the test automation easy, bistriot easy to write the example
specifications because it needs to follow strit@giwon how these examples can be
specified. As we will present in this dissertatiomgny examples in different domains

cannot be specified according to the strict rufdsoov Fit tables need to be specified.

2.4 Story Tests

The first problem is in the terminology that is d$er Story Test Driven
Development. This section will begin with the défons of story tests as defined in
different agile approaches. We list the definititvese to sort out what people determined
to be the scope of story tests, because differ@mens provide different characteristics

about story tests.

2.4.1 Story Tests from Business Perspectives

The first category of definitions of story testéers to business aspects of the
specification. For example, Read et al. statesdjaiance tests are high level tests of
business operatiorend are not meant to test internals or technieahents of the code,
but rather are used to ensure that software nhesiaess goal§RMMO05] and
“acceptance testing is a formal technique to enthakea system satisfies thepectations
of the customer who commissioned the software. piecece tests verify code against the
requirements and act as a type of check of cont@hobligation between customer and
developer” [RMMO05]. Read et al. also states thiae&e tests are written from the

perspective of the useand test the system as a whole (as opposedtttesting, which

34



tests technical detail)” [RMMO5]. Melnik et al. s#¢d'acceptance testing must proceed
from the user’s perspective (not the developes)v05].

The story tests describe the functionalities framibess perspectives. For
example, Read et al. state “the motivation for ptanece testing is tdemonstrate
working functionality rather than to find faultdtteugh faults may be found as a result
of acceptance testing” [RMMO5b]. It also stated thiaey are traditionally specified
usingscenariosand performed by quality assurance teams togetitietthe user or
representatives (eg. Business analysts). [RMMO05b]

Story tests are also to be written by the custonifeptance test are different
from unit tests in that the latter (unit tests) ar@deled and written by the developer,
while the former is at least modeled and possilegnavritten by the customer

[MRMO04]

2.4.2 Story Tests as Examples

Some definitions state that story tests are abawiging examples. Mugridge
states that “in Executable Acceptance Test Driveadlbpment, customers write
Executable Acceptance Tests — executdhisiness oriented examplegor each
scheduled story. The goal is to encourage cleanuamcation of essenti®usiness
needgand ways of meeting those needs) using concxeta@es.” [M08] and
“executable acceptance testlvethrough collaboration and thus clarify the domeaial
scope for all project participants, enabling cosaéipns that build shared understanding

among team members” [MO8].

35



2.4.3 Story Tests as a Project Management Tool

Story tests are also used to report the projegrpss to the customers. For
example, Melnik et al state that “acceptance tggsrconducted (preferably by the
customer) to determine whether or not a systersfsegiits acceptance criteria. The
objective is to provideonfidencehat the delivered system meets the business éeds
the customer” [MMOQ7]. “Acceptance test-driven deyghent is a software development
methodology that emphasizes acceptance testmamaoroject artifact These tests are
used both to represent software requirements asiddss rules and to guide software

development via frequent test runs.” [SNO8]

2.4.4 Story Tests as a Quality Assurance Tool

Story tests are also used for quality assuranaecttonal tests no longer merely
assess quality; their purpose now isltive quality[AO7]. Sauve et al states that
“acceptance testing isvalidation activity performed by the customer, on the entire
system, just before the system is delivered an@a@iat judging if the software is
acceptable” [SNO8]. Mugridge states that “executiixgcutable Acceptance Tests as
automated tests can help developers determine mdweriunctionality is complete as
well as ifany existing functionality has been brok@v08]

Frequent testing can prevent accumulation of defeetore they become
impossible to fix. However, software testing is bHi@ichecking. There needs to be a
method of preventing defects, which is where Tastdd Development comes in. Beck
proposed writing two types of tests: programmespective tests and customer

perspective tests. Programmers can write the tastst will only show the

36



programmer’s perspective of the system. Theretmmether set of tests must be written
from the customer’s perspective. These tests cntadlp double check the two types of

tests against each other to see if there are prshileat are uncaught.

2.4.5 Story Tests from Different Perspectives

Kerievsky describes story tests from more of dgwel@nd testing perspective
[K11]. Kerievsky describes story testing as “tmegess of providing the input data,
initiating a process that corresponds to a stomygoested and comparing the actual
output with the expected output at the end of tloegss. Kerievsky also states that story
tests are “most useful when automated, as this esqzocustomers and developers to
launch them at the press of a button and disctvesystem’s state. Kerievsky suggests
that finding the right input and expected outputdaquires the domain knowledge, but
turning them into tests requires testing knowledderefore, story testing may require
domain experts/subject matter experts and quagyrmance experts. Story testing
involves identifying theminimal testghat will cover all boundary conditions.

Unlike Kerievsky who states that minimal boundaajues must be tested,
Marick suggests that these tests are for explorglid1]. Therefore, he likes to call
story testing aexample-driven developmemtbusiness-facing tesisstead. The purpose
of the tests is to create examples that will hélptakeholders understand the domain
(not so much about covering test values). Gettiegésts precisely right isn’t the point
in the beginning, because coming up with tests raguire more understanding. The
Executable Acceptance tests evolve with better tgtaieding as the implementation

begins.

37



Fowler likes to call this process, ‘SpecificationBxample’ [Foll]. Fowler
suggests that specifications convey the connotd#tiainthey should be general and cover
all cases. On the other hand, specification by gt@stmean highlighting only a few
points and “you have to infer the generalizatioosrgelf’. Fowler suggests that the
dominant idea with rigorous specification (formpésifications) is that pre- and post-
conditions must be explicitly stated in the requiemts. However, Fowler found that pre-
post conditions are very difficult to write in masijuations. But asking for examples is
much easier in some situations. Fowler statedsppetification by examples is “less
valuable in theory but more valuable in practice”.

For people who approach from more traditional safenengineering perspective,
story tests may go by the namseenario test§K03]. Kaner states that “a scenario is a
hypothetical story used to help think through a ptex problem or system”. As the
name suggests, scenario tests are tests basedrmaries. However, unlike traditional
testing practices, Kaner states that “scenariokifirperspective] are meant to help you
learn the product”.

In more traditional testing practices, testersgaven a checklist to test, because
the belief is that the best way to learn softwargésters is to run software “keystroke by
keystroke”. However, Kaner found that testers ditdi;nd more defects and learn the
software better if they are given a set of scesandnvestigate. Scenarios can also turn
into documentation about software. Scenarios & gdod for identifying the experts,
because they will use software differently as thay experience with software.

Scenarios are also good for “surfacing requiremegitged controversies” because

38



people bring in different views about solving tleersarios. Kaner also states that good
scenario tests must be motivating and credible.

Crispin and Gregory used the word, “Agile Testimgstead — to mean customer
facing and business facing tests. They state ¢isting in agile software engineering is
different from traditional testing in that everyosanvolved in testing [CG09]. The
teams are divided into a customer team and a dewelot team only. The business team
includes business experts, product owners, domaierts, product mangers, business
analysts and anyone who is on the business sithe gfroject. The developers write,
design and maintain the automated tests and thee G testers belong to both groups
because they help customers write tests and hekdafeers maintain quality. Crispin
and Gregory also state that the purpose of thenbssifacing tests (or story tests) are to
help elicit examples and context for each storythsd these tests can help guide
programmers as they write the code. Crispin andy@xealso like to use the term
coaching tesbecause these tests can help developers undetistaddmain. Once the
examples are acquired, tests can be created froexdmples. The tests are an
executable format of the examples.

To summarize, one of the key viewpoints that kgggearing in most of the
literature is that the purpose of story testinpisnderstandandexplorethe domain.
Most of them emphasized that story tests help gdeatn about people’s expectations,
business priorities and the domain knowledge. Tthese three keywords, understand,
explore and learn about the domain, form the ketvatons for the research topic.

Story tests examine the business operations, mssgeals and business needs.

Story tests ensure that the system fulfills custtsrexpectations and the tests need to be

39



written from the customers’ perspective. The tpstwide business oriented examples.
The purpose of automating story tests is partlgeiwe as a project management tool,

particularly to report the progress of the develeptnThe story tests are also used for
demonstrating the working functionality. Finallijetdefinitions suggest that Story Test
Driven Development is a validation activity. Howevilere are still many variations on

what story testing is and these claims still neeblet backed with empirical evidences.

2.5 Literature Survey of Story Test Driven Development*

As shown in chapter 2.3, there are many intergogtaton what Story Tests are.
We needed to look the knowledge gap from the exjdtierature and categorize them
into what is known and analyze different views torystests and Story Test Driven
Development. We collected papers (to the best oktiart) related to story-test driven
development that are published in peer-reviewedletence proceedings, magazines and
journals from 2001 to 2010. We collected 49 lesdeamed papers, 8 tool development
papers and 8 research papers. 2001 had the epdgest that we could find. Then we
categorized these publications into lessons-leagmpdrience reports, tool development
and research papers. To be categorized as a regeguer, it needs to pass a quality
threshold regarding the evidence included in thEepaAny papers that cannot pass the
quality threshold are considered non-research papeom these non-research papers, we

divided the papers into lessons learned papersomhdevelopment papers. We included

! This section appeared in the following paper: PatkMaurer, F., A Literature Survey on Story Test
Driven Development, Proc. Of T1nternational Conference on Agile Processes artteele
Programming, Trondheim, Norway, 2010. The copyrigigase form is attached in Appendix Il.

40



both qualitative and quantitative studies for theslarch papers. We excluded papers that
did not focus on agile software development orahmation of story tests.

We searched the ACM Digital Library, IEEE Xplorei&ceDirect,
SpringerLink and Google Scholar. We also manuafrshed the conference
proceedings for XP, XP/Agile Universe and Agile fevence. We also searched the web
pages of the researchers and practitioners whoqugy published papers in story-test
driven development to find any papers that werdiglied outside of these venues.

Quality criteria are important in order to providelusion/exclusion criteria, to
provide a weight for the importance of the studg'sults, to guide the interpretations of
the findings and to guide recommendations for frrtiesearch. Dyba and Dinsoyr used
the Critical Appraisal Skills Programme (CASP)[GI)08]. The criteria are composed
of 11 dimensions. They are as follows:

1) Is the paper research or a lessons learnedt feged on expert opinion?

2) Is there a clear statement of the aim of theaeh?

3) Is there an adequate description of the comtexhich the research was
carried out?

4) Was the research design appropriate?

5) Was the recruitment strategy appropriate?

6) Was there a control group?

7) Was the data collected in ways that addressetfearch issue?

8) Was data analysis sufficient?

9) Has the relationship between researcher anctiparts been considered to an

adequate degree?

41



10) Is there a clear statement of findings?

11) Is the study of value for research or practice?

We only included papers written in English. We gaté&zed all of the literatures
published that are related to Story Test Drivendégyment into 7 themes: cost, time,
people, code design, testing tools, what to test tast automation issues. We extracted
the purpose, settings, research methods, findihtfeaoesearch. We extracted the
motivation for story-test driven development, pregod benefits and issues encountered
from the lessons learned and tool development papée clarity of the defined criteria
was evaluated by comparing the evaluations of aréadomly assigned papers between
other research collaborators. After describingpbiats from the lessons learned and tool
development papers, we also describe the findirogs the research papers. We describe
whether the research papers support the pointsidedaen the lessons learned papers.
We also describe whether the research paper sggperpoints described in the lessons

learned papers.

2.5.1 Cost

Budget is an important aspect of software developmpejects, especially when
one needs to justify the cost of introducing a mpeacess such as STDD into a
development team. We first present the points fiteenessons learned papers and tool
development papers. Authors in [FO1, SSO05, HHO8Yested that the benefit of STDD
is to help keep the project within budget. Finseder states that “the concrete feedback

about the current state of the system is pric¢le3%]. The team'’s continual small

42



adjustments (on time) keep the project on coursino®m and on budget’[FO1]. Schwartz
also states that the automated story tests canoftan and facilitate regression testing at
low cost’[SSOO05].

Four papers [FO1, SSO05, CHO1, CHWO01] stated th&smay not pay off
because the cost of writing and maintaining thestisshigh. For example, Crispin states
that the QA’s are “paid to be cost-effective, [bihigre are cases where automating a test
and running it repeatedly will not pay off in therrin of defects found.”[CHO1]. In
addition, four papers stated that their teams dichave the budget necessary to
automate the tests [CHO1, CHWO01, A04, A07]. Andstzdied that “given the size and
complexity of the system, this budget was not sidfit to automate acceptance tests for
the entire system, so the developer and custontiaboocated to define smallest possible
set of representative tests for the highest pyidfA04].

There were no research papers that explicitly aealyhe cost and budget aspect
of STDD process or the tools. However, we assumedgiven an appropriate tools and

practice, the benefit of STDD will outweigh the tos

2.5.2 Time

Time is important for project managers, becaukastimpact on the amount of
resources required to complete the project. Fivetpavere discussed in the lessons
learned papers as the benefits of STDD procesehd STDD can help check the overall
progress [FO1, HHO08, CHO1, CHWO01, A07, WL04, ROA8YTD09, HHO9, St09,
KPGMO09, MMO5]; 2) adapt to requirements change$ wie help of instant feedback,

which can help keep the project on time [CHO1, HH@MO08]; 3) continuous

43



verification (test anytime, more often, repeat€ttyj08, M08, HHO9]; 4) better
estimation of the stories [WL04, OP09]; 5) immedidefect fixes [St09, KO6]. For
example, Rogers [R04] states that “showing theltesifithese tests is still important for
the customer so that she can track the progredsvelopment”. Hanssen and Haugset
[HHO9] stated that the motivation for their STDDppess was that “the paradigm of agile
development relies on instant feedback and shegldpment cycles; automation of
acceptance tests may thus be seen as a promigiagva to ease and speed up this
process”. Kongsli [KO6] stated that STDD is “exeell for regression testing and allow
for continuous integration, in turn enabling issteebe handled immediately when they
appear”, which would serve similar purpose as t@sting but now the results would be
meant for the customers.

However, some lessons learned papers identifieg tissues related to time: 1)
writing and maintaining tests took considerablestitdHO8, St09, KPGMO09, A04,
GHHWO05, TKHDO6], 2) it can take long time to exextiie tests [R04, GHHWO5,
ABSO03, MCO05, HKO06], and 3) there can be a lackmagtto build the necessary testing
tools and infrastructures [St09]. For example, Ghanal. [GHHWO05] found that they
had “an imbalanced team, and this forced our atetgsfocus all their effort on just
doing enough to keep the developers busy; andrascbedule tightened, the
management team began to speculate about movirggatetest writing and automation
until after the story implementation.” AnderssorB@03] discovered that “because
running all tests at every build would take toogpdevelopers pick a time up to 15

minutes and run all tests that take less thartithat before checking in”. Stolberg [St09]

44



stated that he “worked on a small team and didrénsto have any ‘extra’ time for [him]
to work on the infrastructure [he] needed”.

There were two research papers that dealt with. fithe research paper,
[MMCO06], discovered that the test subjects were ablwrite and test using story tests
within an expected amount of time. They origin&kpected each person to contribute
about 4 hours a week and most people were able $o avithin the allotted time frame.
It suggests that time may not be an issue if tveldpers allocate appropriate time and
have the guidance to complete them. The reseapdr gdMO07], discovered that timing

was a matter of discipline more than an actualtgwproblem.

2.5.3 People

Software is developed by people. Their commitmskitls and collaboration are
important in the success of the development projdat lessons learned papers suggest
there are five benefits: 1) better communicatiothwhe stakeholders [HH08, M08, OPQ9,
HKO06, SP04, ARS07, GBGP07, KNRQ9, CD07, PMO08], @fwence about the progress
and deliverables [HH08, CHWO01, St09, K06, HK06, RARS07, MLSMO04, ABL09],
3) better awareness for testing in the team [R63{D06, MS07, HHO8, St09, MMO05],
4) encouragement of collaboration between righpfeefR04] and 5) anyone can quickly
understand what's been developed [GHHWO05, TKHDB6}. example, Abath [ARS07]
states that “the approach presents a number ofitegnehich include an effective
bridging of communication gaps between clients denkelopers, synchronization
between changes in requirements and the code myréteoost of confidence in the

software that is being developed and automatieadfprced focus on the client’s interests,

45



preventing feature creep.” Talby et al. [TKHDOGtsts that “because developers were
responsible for writing tests for each new feattheir test awareness increased and they
prevented or quickly caught more edge cases whdg worked.” Ghandi et al.

[GHHWO5] stated that “midway through our projette number of developers increased
from 6 to 24 in approximately 4 weeks; this massiwaling was surprisingly successful —
we think in part due to our use of FIT documents.”

The lessons learned papers also identified twolpnabrelated to people. 1) The
STDD affects everyone, which made the adoptionadiff [R04]. [R04] states
“acceptance testing is especially challenging beea the size and scope of its impact
on all members of the team.” 2) Some papers idedtthat there was no direct contact
between developers and customers because thevestsoo good and too explicit
[GHHWO05, ARSO07]. For example [GHHWO05] states thaintended side effects of
STDD were that developers “will write code simpdyrhake the tests pass without
closely collaborating with the original customerdiliver the story’s business value”.

In addition, there were some papers that discuasisedt the people’s skills. Some
papers argued that it took too long to learn tisértg tool or the specification language
[HHO9, ABLQ9, KO7]. For example, [GBL+04] stateséave had, and continue to
have, problems in automating acceptance testsistp@rtly due to the nature of project,
but also due to both unfamiliarity with the techuregand lack of appropriate testing
infrastructure”. Some authors identified that la¢kest automation experience in the
team was the barrier [M08, KNR09, GBL+04, Su07, R&8Y but most of them
overcame the problem quickly. For example, [MO&}ess$ it is difficult to “assemble a

team with all the needed skills to support highliquatory test development”.

46



In terms of the responsibility of writing and maiimting the story tests, there were
teams where the whole team was equally resporfsibtae tests [CHWO01, TDO09,
TKHDO6, Su07], or a separate group of dedicatectibpers/testers were created for
STDD [CHO1, GHHWO0S5]. One team used pair story testnethod [CHO1]. In terms of
who writes the tests, there were many variationsaé&stated that the customers wrote
the tests with the help of the developers andrief@L 04, R0O4, M08, HH09, MMO08,
ABS03, GBGP07, MT03, DWMO7]. In some cases, devaippvrote the story tests with
the customer collaboration [A07, TD09, HH09, MMROB] some teams, the QAs wrote
the tests in collaboration with the customer [CHWILSMO04].

We found seven research papers that looked intpl@eelated issues. [MRMO04]
performed an experiment on how quickly developarslearn to use a STDD tool.
[MRMO04] discovered that “FITIMCO05] tests describingstomer requirement can be
easily understood and implemented by a developérlitie background on this
framework”. They discovered that 90% of the teffjscts delivered the Fit tests.
However, the researchers in [RMMO5] discovered thate was difficulty in learning
some of the Fit fixtures, because the test subdisused a very basic and limited
number of fixtures types.

The experiment performed in [MMCO06] suggests thaté was no difference in
the quality of story tests produced by businesdupate students or computer science
graduate students. However, the computer scierazkigte students produced much
more negative tests. Both business and compueneseigraduate students struggled with
learning Fit initially and there was no correlatioetween prior work experience and the

ability to learn Fit. However, once they learnet] Both types of students used the tool

47



easily and produced good quality specificationse @mding from [MMCO6] is that the
team where the business and computer science geastudents were put into one team
produced much better specifications than the temithsonly computer science graduate
students. We suspect that the combined team prdduoee comprehensive tests because
different perspectives were represented.

On the contrary, the research in [RPT+08] suggésisexperienced developers
gain much more benefits from Fit tables in softwarelution tasks, suggesting that
previous experience does matter. It suggests Mistirgy skills do influence the amount
of benefits one can get from story testing tools.

The research in [MMO07] found that story tests aloaeld not communicate
everything, because it didn’t provide the cont@kte story tests, however, encouraged
more collaboration and encouraged “continuous lagrabout the domain and the
system through testing”. The researchers in [PM@@hd that the story tests are the
medium for communicating complex domain knowledggpecially in a very large
software development team. It is impossible tolighe developers complex domain
knowledge, but the story tests can guide the deeesoto implement correct
functionality and seek out the necessary domairegspvhen the need arises.

The researchers in [RTCTO7] discovered that steststwritten in Fit actually
were more ambiguous to untrained test subjectgusecthey didn’t know how to
understand the Fit tables. The research particglanttook more time than expected to
understand the requirements written in Fit. Theesfetory testing tools, such as Fit, do
not necessarily guarantee improvement in communoit#tthe users are not trained in

the tool.

48



The research done in people-related issues on Stz moment provides a
mixed result. However, the research tends to suppemotion that the existing tools are
not intuitive to use without some training. Thee@<h also seems to confirm that

collaboration between subject matter experts andldpers is a good practice.

2.5.4 Code Design

The lessons learned papers identified five bengfitsode design. They stated
that there is 1) a better design of the code fatatslity, such as separation of backend
functionality from the user interface code [FO1,@HA04, GHHWO5, HK06, PWO03,
MO05, PMO08, KO7]. For example, Kongsli [KO7] statit “using fully automated
acceptance tests entails a particular style ofldpugent that produces ‘testable’ code.”
2) Some discovered that the team produced qualdg the first time and discovered that
STDD can drive quality [A07, S03, ARS07, YRGO09, SMT For example, [ARSO07]
found that “fewer bugs were discovered when théesysvas placed in production.” 3)
The STDD can drive the overall code design [HHO88MYRGO09] and 4) developers
had a better understanding of their code [ABLO®}. &ample, Abbattista [ABLO09]
found that the team had “better understanding @&istem to be migrated and a valid
starting to point make a migration plan” becaus8DDD. 5) Some papers argued that
STDD also helped developers think about the useemrence early [St09, M08]. There
were no papers that identified issues or concesflased to code for STDD.

There were four research papers related to the @esign. The researchers in
[RMMO5] discovered that more quality code is proglithe first time. The research in

[RPT+08] suggests story testing tools can help wsatftware evolution, especially for

49



more experienced developers who are coding alooeeMer, the benefit of Fit tables in
software evolution tasks decrease when the deved@pe working in pairs. As to what
was written for Fit tests is not explained and rameples were provided in the paper.
The researchers in [RTD+08] confirmed that Fitésltan help developers perform code
maintenance tasks correctly, because it ensuresetipairements changes are
implemented appropriately and the regression tesare that the existing functionalities
are not broken. However, the experiment performefMMCO06] showed that there was
no correlation between the quality of the storygesd the quality of the code. It

suggests that story tests are not a good tooldiotralling the quality of code.

2.5.5 Testing Tools

Many papers deal with tool support for STDD. Thpgra suggest that there is a
lack of tools that can help facilitate STDD effeely. First, we present the discussions
related to the types of tools that were used fdDBTSome used capture/replay tools
[CHO1, MM08, MMRO03, AB04, ABV05]. However, thereeaclear disadvantages with
these tools because the GUI must exist in orderdate the tests. Most people voiced
that the capture/replay tests are easily broken exth a minor/cosmetic changes in the
user interface. In addition, these tools are uabigtfor gathering requirements as GUI
would not be developed yet. Instead, some peo@eint testing tools such as jUnit and
nUnit [FO1, St09, ABS03], because they give a fqgawer to the developers for
automation. Some people used word processors eadghneets for acquiring the story
tests from the customers [FO1, CHO1, A04, ABLO@nt® people used XML for the test

specification [CHO1, A04, KNR09, MT03, NMO05]. Someople preferred scripting

50



languages or API based tools such as Selenium [CHI09, KO6, HKO6, KNRO09, K07,
ABVO05]. But most people used tabular and fixturedzhtools such as Fit [SSO05, HHO8,
S03, M08, HH09, MM08, A04, GHHWO05, MCO05, R04, KNROALSMO04, ABLO9,
GBL+04, Su07, MT03, DWMO07, NM05, CSGMO06, MS07, PNI08

In terms of ways people use these tools, some pewgled that customers and
developers ended up using different tools basetti@in familiarity of the tools [A07,

R04, KPGMO09, HK06, ABL09, CSGMO06]. For example, fR@8tates “customers,
however, do not use an IDE; now while you can tehem to use an IDE, which is
something that we have tried on a previous projei,advisable to enable customers to
use a tool that they are familiar with or thatasiéy accessible to them.” Some people
also integrated other testing, bug tracking, andémnain-specific productivity tools
[GBGPO7, KNR0O9, CSGMO06, CDO07]. For example, [CSGMO6grated MatLab to
work with Fit and [CDO7] integrated wiki and Mantstheir STDD tool. Some people
felt there was a need to integrate with distribiaatbmation framework such as STAF
[St09, KNRO9]. In summary, it seems that there mead for STDD tools to be integrated
with many different types of tools so that usens define tests in their familiar tools.

In terms of features that people thought were irtgmrin story testing tools are
automated test generation [KPGMO09, ABS03, MMRO03\VAB], automatic test data
generation [TKHDO06, ABV05] and automatic documeiotageneration [R04, OPQ9,
PWO03]. Automatic test generation could mean autmaldy creating test fixtures from
Fit tables [KPGMO09] or creating tests from sampkbvpages by tracing user inputs from
a web page [MMRO3]. For automatic test data geimeratABS03] tried to mine input

data provided by the customers and feeding theorntlvé tests automatically. Some

51



people argued that story tests could automatitalyurned into user manuals. [PWO03]
developed a tool that can automatically outputEmglish translation” of the tests into an
HTML file.

In addition, some people thought important tootdess include viewing the test
result history [KPGMOQ09], refactoring of the tes&H01, A07, M08, KPGMO09, OMO08]
and test organization features [R04, M08, KPGM@E®8}. example, [OMO08] provides an
ability to automatically refactor story tests. [M@Resires that tools could “manage and
organize very large suites of story tests to makasier to find those that are relevant to
a particular persona, user task, interaction cantese cases, or domain object for
example; keeping the story tests consistent wehutiderlying assumptions”.

In terms of research papers, [CKMO09] analyzed wéredimnotated documents in
story testing tools can help write better storyse§he annotations are pre-defined
keywords that must be used for the testing tooptsing out the tests properly. The test
subjects had a central tendency to agree mostl/ré@¢earchers in [CMKO09] also
performed an annotation experiment on a medicaladtonT heir findings suggest that the
participants who were given an annotation to folteated story tests with less missing
elements than those groups that did not. The relsesaipports the use of annotations in

the story test tools.

2.5.6 What to Test in Story Test Driven Development
We found that there are surprisingly many variation what to test using story
tests. They include the graphical user interfacerder to simulate how user will interact

with the system [S03, ARS07, MMRO03, AB04, ABVO5klwservices, web applications

52



and network related issues [K0O6, KNR0O9, MTO03], lwkfunctionality (functional
requirements) [OP09, ARS07], performance [CHWO&¢usity [CHWO1], stability
[CHWO1], non-functional requirements [OP09, ABS(&jd-to-end-customer’s
perspective of the feature [HH08, MMRO3], regresdisting [FO1, A07, S03, R04, St09,
K06, A04, MCO05, KNRO09, Su07, DWMO07, MMRO03, MSO7kar interaction [AO4, R04,
MO8, ABO04], concurrency [ARS07, KNR09], databas®&RD9], only the critical

features as judged by the developers [HHO09], anli4layer architecture of software
design [PMO08]. Finally, most people thought thegmse is not so much about testing,
but to communicate the requirements with the custdman unambiguous way [HHOS,
R0O4, M08, HH09, KPGM09, MM08, 310P09, HKO06, K07, ®B9, PMO08].

No empirical evaluation of this question exists.

2.5.7 Test Automation Issues

Finally, we analyzed the issues involved with awting story tests. Some people
identified that there is difficulty in maintainirtbe tests especially in large projects [A04,
R04, St09, KPGMO09, ABS03, MMRO03]. For example, [ABtates that currently story
tests “don’t have the same type of regression gafkstas production code”, which
makes it difficult to safely make changes to tleystests without introducing
unintended interactions between the tests. Simjltrere is difficulty in organizing and
sorting the tests in order to see the big pictA@l] A07, An04, 38]. For example,
[HKO6] states “we found that keeping all of thetseig one Suite was the easiest way to
manage the tests, but that frequently we wanteggidop the tests in other ways (by story,

by iteration, by functionality set)” but they dis@yed that moving around a large set of

53



stories was difficult. The paper did not specifywhimany stories were involved.
Similarly, [GHHWO5] discovered that “moving the donents around different
directories had its drawbacks; firstly, it was peda error, with people forgetting to
commit both the removal and addition of a movedudeent; this led to a confusion and
time spent sorting out which was correct”.

Some found that it is difficult to locate defectisede [CHO1, A04, A07, R04],
because a story was concerned with a bigger sdapéeature. There is a desire to
automate at the user interface level, but the astbibthe papers couldn’t because these
tests break down easily [CHO1, A07, M08, HK06, SPMhe author desires for better
usability of the testing tools [A04]. Some peopésided for more readable test
specifications [HHO08, A07, R04, M08, A04, GHHWO5RA&07, GBGPO7, AB04,
GMSO05, R03]. Some people thought keeping trackefistory of the tests is important
[GHHWO5]. One author worried that the team ignatteeltests because there were too
many false alarms [HKOG6], mainly because the tedisd on the GUI, which broke the
tests easily even with only small changes to tles uderface.

Another concern is a lack of readily usable testouis that can accommodate
specific needs [HKO6, ABL09]. One author argued tha problem is with the
incompatibility of different platforms and languager the tests [GBL+04]. Some people
emphasized tests should be written using more bézisdjects and services [GHHWO5,
ABLO09, MS07]. Some people argued for separatiotesif data and test code and that the
tool should help with the separation of test an tbetter [CHO1, KO6, MO5].

No research paper analyses these issues.

54



2.6 Analysisof the Literature Survey

The number one question that arises from thealiiee survey is what are story
tests? The results from 2.5.5 suggest that peoplasang different testing tools to
specify story tests, but these testing tools aseitigble for specifying story tests. As
much as there are different tools for specifyiraystests, we are also noticing different
uses of story tests. For example, literature in32sbiggests that people used story tests
for communication with stakeholders about the dewelent progress and deliverables, to
improve awareness for testing in the team andrigthe right people for collaboration.
On the other hand, literature in 2.5.4 suggestsstioay tests are used to improve code
design. There is clearly a lack of understandinghenpurpose of Story Tests. Literature
in 2.5.1 and 2.5.2 suggest that the main hindrémeeacticing Story Test Driven
Development is finding ways that will not be tostlp and time consuming. We need to
discover the uses of Story Tests and figure ouswayvhich the benefits of practicing

Story Test Driven Development will outweigh the tcasd time that are involved.

2.7 Summary
In this section, we presented the literature suoreynanagement theories, Agile
software development and Story Test Driven Develamimn the next Chapter, we will

present the research goals and research methatisousenduct our research.

55



CHAPTER 3: RESEARCH APPROACH
In this section, we present the research goalaresanethods, research design
and the evaluation criteria that we used to conductesearch. We present the research
goals and the objectives for each of the caseestal well. In this Chapter, we explore
research methods and explain how and why we emgltiyese methods to conduct
research. As most of our research is qualitativeatoire, we go into more depth on the
limitations, assumptions and the reasons how wecawae the challenges of conducting

qualitative studies in software engineering.

3.1 Resear ch Questions
The main goal for research is to investigate whypteuse Story Test Driven
Development in Agile software development. Theeetaro main research questions.
Resear ch Question 1: What problems are faced by Agile teams in praagicin
Story Test Driven Development?
Resear ch Question 2: Investigate the relationship between stories, seand
defects.
Resear ch Question 3: What are the factors that lead to successful aolooti

Story Test Driven Development?

Currently, there are many ideas on what Story Tagt®nd how to practice Story
Test Driven Development, but there is no analysisvhy people practice Story Test
Driven Development and what works. The first geabi gather different ideas and

strategies that people came up with for Story Desten Development. The second goal

56



is to figure out what Story Test Driven Developmean actually offer to Agile teams.
The next goal is to observe teams that are actpedigticing Story Test Driven
Development and analyze our observations with amddam that practiced story test
development in a similar way but failed to makeatrk.

Table 1 outlines the overview of the research goest objectives for each study
and the outcomes of the study. Figure 2 outlinesotferview of the outcomes and the
emerging questions for each study and how thosstigus were used for the next study.
With Table 1 and Figure 2, we are attempting tosjgi® an overview of research and
how these studies relate to each other. In chdptse discovered 22 uses of story tests.
The power of Story Tests comes from its abilityimé from stories and codes and to the
defects. Therefore, in chapter 5, we performedsa study where such tracing is possible
and we discovered two attributes that have highetatton with stories and defects. We
discovered that the attributes with high correlatme communication related attributes
such as the number of indirect stakeholders andeuwof related stories. The result
suggests that the occurrence of defects is highietated with the increase in the
number of indirect stakeholders and number of edlatories.

Therefore, in chapter 6 and 7, we performed casiest on why people practice
Story Test Driven Development and how they userys&sts. It confirms out hypothesis
that stories are indeed a communication tool toa¥ier hidden requirements and hidden
complexity in finding related stories. But we atiecovered that story tests are an

excellent medium for transferring customer’s donaiowledge to the developers.

57



Table 1: Research Questions and Summary of Outcomes

Research Questions Phase Objective Method Used Study Outcome

Addressed

1) What problems are faced 1 Study of existing body  Literature review - e Problem statement

by Agile teams in practicing of knowledge » Initial research questions

Story Test Driven
Development?

2 Investigate the the Survey AAFFT Forum e Aninitial list of problems
problems faced by analysis (Ch. 4) related to practicing Story Test
practitioners in Driven Development

practicing Story Test
Driven Development

 We found two attributes that

2) Investigate the 3 Investigate the Quantitative A Large Software how hiah lation bet
relationship between traceability from case study Development showhigh correfation between
stories, teams and defects stories to defects Project using Jazz stories and defects.
(Ch. 5)
3) What are the factors that 4 Investigate the factors ~ Observational Production * STDD is used to communicate
lead to successful adoption that lead to successful  case study Accounting domain knowledge
of Story Test Driven adoption of Story Test Software e Use of formats of the domain
Development? Driven Development Development for writing the story tests
Team (Ch. 6)
5 Investigate the factors  Observational Economic e STDD requires a community of
that lead to adoption case study Reserve Analysis story test contributors
failure of Story Test Software
Driven Development Development
Team (Ch. 7)

58



Figure 2: Summary of Studies and Emer ging Resear ch Questions

Study

Ch 4: Explore the Issues

Ch 5: Traceability from
Stories to Defects

Ch 6: A Case Study of a
Successful Application of
STDD

Ch 7: A Case Study of a
Failed Application of
STDD

Outcome

Emerging Questions

Identified 22 problems related to
practicing Story Test Driven —
Development

Are there other techniques or tools
that can trace from stories to
defects?

We found two attributes that
show high correlation between — |
stories and defects

What is the reason for practicing
STDD that other techniques cannot
replace?

STDD is used for

communicating the domain —
knowledge

How can a team fail to apply
STDD?

Lack of participation and
commitment from the domain

Synthesis of Findings

experts

59




3.2 Research Methods

Unlike other science disciplines, software engimggresearch does not have one
standard paradigm that can fit all of the rese&ypks within the software engineering
discipline [S02]. One of the reasons is becaussvaoé engineering has a lot of human
factors and must deal with qualitative results #iratoften hard to compare and duplicate
exactly. Therefore, there are many ways to appreaftvare engineering research.

Our research faces two main challenges: adopti@tafy Test Driven
Development in real life situations and the evatrmabf how the observed techniques or
organizational methods worked for their practic&tdry Test Driven Development. We
employed several case studies. However, case stuslieg real life software projects
have many difficulties and may not provide idetlaiions for observations. As such, we
can only observe how teams do their work andoftsn not practical to ask the
participants to change their work environmentsrocesses just to fit our research better.
Therefore, we included a detailed summary of theeod in which these teams worked.
In addition, the adoption usually happens graduaititin the company over a long
period of time while they juggle all the politicacdaresources. There are often a lot of
human factors that cannot be controlled or evedigted in real life adoption process. In
our research, the difficulty is heightened evenerimecause Story Test Driven
Development is a very new technique and not maayseare practicing it currently.

The most difficult part of pursuing research inttbgtion of new development
techniques is the difficulty with evaluations. Besa we are entering into the real life

situation as an observer, it is impossible to mteahat kind of results we will get or

60



even what kind of processes we may end up obserVimgrefore, we employed
gualitative observational case studies for thref@of case studies.

In our research, we used empirical methods. Thererapmethods are concerned
with understanding and identification of relatioigshetween different variables through
observations and experimentations [WRH+00]. If misteng preconceived idea exists,
then the investigator is interested in confirmingether it is true. These types of
guestions and their subsequent experimentationsearimprove our understanding of
software engineering. Therefore, the main resestreltegy that will be used in our
research will be empirical methods.

There are two types of research paradigms for ciolig research data in
empirical methods. Qualitative analysis “is conesgfwith studying objects in their
natural settings’[WRH+00]. A qualitative researchédempts to interpret a phenomenon
based on explanations that people bring to theattdtmpts to analyze what the subjects
in the study feel to be the cause of the phenomandrunderstanding their views of the
problem. Qualitative methods, especially the exaitany kind, aim to “develop pertinent
hypotheses and propositions for further inquiry9Y or develop of a set of ‘theories’
based on supporting evidence. The word, ‘theorigsised in the context of a set of
plausible and consistent hypothesis, not ‘theoassh unifying and undeniable force of
natural law as used in math or physics.

In contrast, quantitative analysis deals with “gifgimg a relationship or to
compare two or more groups’[WRH+00]. Quantitativethods look for statistical
significance. Quantitative research is usually grenied through controlled experiments.

The advantage of quantitative data is that staéiséinalysis can be used.

61



Generally, quantitative methods such as contrabgueriments are appropriate
for testing the “effects of treatment” and qualitatstudy is used to find out “why” the
phenomenon occurs or to develop a hypothesis toltee two approaches are
complementary. There are three major types ofegjias that can be used in empirical
studies [WRH+00, R93]. In the following sectiong discuss the three methods used for

the purpose of conducting our research and whidgiest employed these methods.

3.2.1 Survey

A survey research method is used for the studsemted in Chapter 4. A survey
is done in retrospective of the usage of toolsractices [P94]. Data can be obtained in
both qualitative and quantitative approach eithesugh interviews or questionnaires.
The responses can be open ended or close endedoifth@f the surveys is to analyze a
sample that is representative of the larger pojmura®he surveys can be used to draw
descriptive, explanatory and exploratory conclugiRH+00, B90, R93]. However,
surveys do not provide the investigator with thiitglto control the execution or the
measurement, but the investigator can evaluat®imparing results [WRH+00].

There are two types of surveys. The purpose ofrigis@ surveys is to
understand characteristics or attributes about smwpalations. This type of surveys
shows that the observed distribution of charaagists in the population, but not why it
exists. The purpose of an exploratory survey otoduct a pre-study to more thorough
investigations. It is to find out what are impott&gsues that were unforeseen at the start
of the study. It is designed by providing loosetystured questionnaires to the

participants. It does not start with a specificeaesh question, but the researcher begins

62



with open mind about finding possibilities [WRH+00Ye employed the exploratory
survey method in Chapter 4 to generate an inigabsresearch questions. We gathered
22 factors that people thought were the main issuedved in Story Test Driven
Development. These 22 factors became the basfartber studies in subsequent
Chapters. Further details about the specific rebedesign for the survey is included in

Chapter 4.

3.2.2 Case study

The case study method is employed in Chapters/5@ase studies are used for
observing projects over a longer period of timea@ingle entity or phenomenon
[WRH+00]. Data is collected with a specific purpasenind within the observational
settings. Some case studies that are quantitativature can use statistical methods to
derive conclusions [WRH+00]. Case studies are @hffethan experiments in that case
studies are observational studies [ZW98]. The psepaf a case study is to find key
factors that may have influenced the outcome [Y&95], but the investigator cannot
isolate these factors into controls and treatmigkgsn experimentations. Case studies
are much more suitable for industrial evaluatidng,their observations are harder to
generalize to every situation.

We performed both qualitative as well as quantitatiase studies. The benefit of
guantitative case studies is that unit of analigsissually easier to define and arriving at
mathematical analysis is easier. On the other hawedyenefits of qualitative case studies
are that they examine the process holisticallyr@leno recipe for qualitative analysis,

but there are some guidelines. For example, qtiggtanalysis uses inductive methods

63



in the early stages, especially when codes arglggnerated for content analysis or
figuring out the categories or themes. StraussGortdin call this process open coding
[SC98]. The Grounded Theory technique by GlaserStralss emphasizes being
grounded in data and embedding meaning and retdtips from data through open
coding [GS67]. Once the categories and themes enfierg data, a hypothesis can be
generated. Once the hypothesis is generated frenmdluctive analysis, deductive
analysis can follow [SC98]. Strauss and Corbirestat the heart of the theorizing lies
the interplay of making induction (deriving concgpheir properties and dimensions
from data) and deductions (hypothesizing aboutélaionships between concepts) “
[SC98]. We employed grounded theory for the stndyis Chapter.

Case studies are used in Chapter 5, 6 and 7. [Faighesls about the specific

research design for these projects are includéakin respective Chapters.

3.2.3 Experiment

Experiments are done in a highly controlled settilgre treatments are given to
random test subjects. The objective is to manipusaie or more variables and arrive at
the conclusion based on statistical analysis [M8IZ88, R93]. Experiments can be used
to confirm existing theories or hypothesis. They akso be used to explore relationships

between specific variables or to evaluate the aoyuof models [WRH+00].

64



CHAPTER 4: PROBLEMSWITH PRACTICING STORY TEST DRIVEN

DEVELOPMENT?

Chapter Overview

Problem: What problems
are faced by Agile teams in
practicing Story Test Driven

Study 1: Explore Objective:
Investigate the
the problems

Study 2: Traceability faced by Study: Analyses of
practitioners in community discussions of
practicing Story STDD in AAFFT Forum

Study 3: Successful Test Driven

Application of STDD Development Outcome: An initial list of

problems related to

Study 4: Failed practicing Story Test Driven

Application of STDD Development

4.1 Problem Statement

As stated in Chapter 2, there are many diffenaietrpretations on the uses of
Story Tests. There is some consensus that Stotg $lesuld be used to communicate
requirements. However, much is up for interpretatguch as how much testing it should
contain, how it should be written, who should wiitand its role in quality assurance as
we have already shown in chapter 2.5. There aceddfiferent takes on what is required
for story testing tools. We mention the story t&gtiools in this chapter, because story
tests cannot exist without the tools. The toolardy influences the way customers write

their story tests, but it also influences the wag test automation happens.

2 This Chapter appeared in the following paper: P&rkMaurer, F., A Network Analysis of Stakehokler
in Tool Visioning Process for Story Test Driven B®pment, IEEE ICECCS 2010 5nternational
Conference on Engineering of Complex Computer 3ysté&t. Anne’s College, Oxford, United Kingdom,
March 22-26, 2010. The copyright release formtiacited in Appendix II.

65



As mentioned in chapter 2.5.1 and 2.5.2, the mardla of adopting STDD is
cost and time - how you choose your story testadstcontribute in a large part of how
the story tests will be written and executed. Ualigquirements engineering in
traditional software engineering, the tools in $tdest Driven Development play an
important role in how the story tests are writted gested due to the automation aspect
of the story test, much like unit tests in Testv@r Development. Depending on the
choice of the tools for writing the story tests thverall practice of Story Test Driven
Development could be affected. Therefore, in otdefiscuss the uses of story tests, we
cannot ignore the discussion on the roles thastibiy testing tool will have in the overall
STDD process as well.

As stated in chapter 2, Agile software engineedags not view software
development in phases. Therefore, it is inherdantjyossible to talk about only the
requirements engineering side of Story Test DriDemelopment without the testing
aspect as well. It is inherently impossible to w@fiout the test automation without some
mention of the tools. It may sound strange for sameefrom traditional software
engineering to hear that these concepts are atfusAgile software engineering, but
this is the reason why | started my dissertatiai wie overview of the philosophical
differences. Therefore, we will discuss the artefaiols and the process in order to
answer the objective of this chapter.

The purpose of this section is to take a samp&ewide selection of the different
views on the problems that practitioners face wihely try to practice Story Test Driven
Development. The research is also an attempt tergenhypothesis for the rest of

research. This is an inductive qualitative analysis

66



In this Chapter, we present a research projectwaitempts to collect and
analyze different experiences and evidence of Stesf Driven Development. We
analyze the discussions on Story Test Driven Degreént from an online forum where
people offered their experiences, their solutiams their view of the problems that Story
Tests can solve. Analyzing these opinions and ngsprovides a better overview of wide
array of views within the community than lookingyat the published literature,

because not all industry practitioners publishrtb&perience.

4.2 Background

The Agile Alliancé organized workshops to envision what Story testirus
should behave like [AA07,AA08], because practiti@mieel that the existing tools are
inadequate for effectively facilitating STDD. Urdikr est-Driven Development that is
primarily meant for developers, STDD must involWlestakeholders including customers,
domain experts, developers and testers. Peopledifbenent backgrounds and skills
have different expectations about how one showddterstory tests and communicate the
requirements to each other. Therefore, the isswedvied in STDD are much more
complex than unit testing. While such collaborati@tween different people has a high
potential for productive and innovative outcomdgnres for misunderstanding can also
be very high..

A group of Agile practitioners pursued the discassiover several face-to-face
workshops [AA11]. However, coming up with a gocst bf requirements for the future

STDD tool was a very challenging task. Thereforlaram was created to gather

% The Agile Alliance is a nonprofit organization theformed to support the advancement of Agile
development principles and practices

67



experiences and visions of story testing tools fthbencommunity [AA11]. This is a
forum where people can offer any stories, toolgisions as long as they were related to
Story Test Driven Development. We analyzed theudisions in the workshops and the
online discussion forum for their view on STDD. Tdrealysis gathered about 300
features, issues, concerns and wish lists for Sftesg Driven Development. There are
over 350 members who are following the discussienan this huge list of features and
community members, we wanted to find out if thera icore set of concepts that are
linking all of these opinions in these discussidnsaddition, we analyzed the network
graphs of the people with their proposed ideagé&oifscertain ideas have consensus in
the community. The analysis could provide a gurdehs to which discussion topics are
popular and which may be ignored in the discussion.

The purpose of this project is to understand whdtieze is consensus within the
STDD community. Because there are a lot of vantion the ideas, it is extremely
difficult to get a big picture of what is being disssed. The motivation for our research is
that the anecdotal evidence, opinions and theionssprovided by the industry
practitioners may provide interesting insights iStory Test Driven Development. The
justification of driving innovation through onliferums is the Wisdom of Crowds
[WO04]. The anecdotal evidence provided by expestigs is an alternative way to create
insights. We can use social network analysis toaekthis meaning and validate it in part
by determining how consensus is reached.

This Chapter is organized as follows. In Secti@) desearch methods are

presented. In section 4.4, the research desigesepted. In Section 4.5, the research

68



results are presented. The implication of our neteis presented in Section 4.6. The

threats to validity of research are presented ctige 4.7.

4.3 Resear ch Methods

We used a qualitative research method for analythiegpinions presented by the
participants in the discussion forum. Strauss ambi@ state that qualitative research is a
“nonmathematical process of interpretation, caraetlfor the purpose of discovering
concepts and relationships in raw data and theaintzing these into a theoretical
explanatory scheme” [SC98]. Qualitative findings de done with three kinds of data
collections: (1) open-ended interviews, (2) dirgaservation and (3) written documents.
In this research, we are using written documentsdio analysis. We used a hybrid

method that is inspired by grounded theory, butise added social network analysis.

4.3.1 Grounded Theory

One of the methods used for reduction of text heds grounded theory [GS67].
In order to build our network graph, we need toagate a set of manageable core
concepts from text available on the online forumJA]. We used grounded theory
[GS67, S87] to analyze and to reduce the discugsidrio code. Grounded theory is a
bottom-up research process where we start withatatasee what theories/concepts arise
out of that data. There are three types of coddpen coding, Axial coding and Selective
Coding. Open coding is the process of developitggmaies of concepts and themes
emerging from data. This phase is about exploratg.dAxial coding is to build

connections between categories. Selective coditgyrisfine coded data into structured

69



relationships and categories. Our coded data @ aleeg with the social network
information to discover whether there is a corecepn that is driving the community. A
few researchers have combined grounded theory aethwark analysis before [SPO7,
ADO0G6]. Different disciplines use different methdds the network analysis. We decided
to combine grounded theory with more rigorous nekvwamalysis based on graph theory
for our purpose. Therefore, our approach is insiirg grounded theory, but we did not

adopt the practice in its purest form.

4.3.2 Network Centrality

In addition to the coding, we wanted to find outhimany people share similar
ideas or stories. In this way, we not only getabee concepts, but how people support
these concepts. We applied network analysis ora@ded data based on who reported
the concepts [AA07]. We used Degree centrality Batliveenness centrality to obtain the
network measures. Centrality is an important conttegt assigns “an order of
importance on the vertices or edges of a graplsbigaing real values to them”. The
purpose of centrality indices is to quantify aruitive feeling that some vertices or edges
on a network are more central than others [BE®BLéntrality analysis, we are trying to
discover the vertex central from vertex peripheral®order for a graph to be analyzed for
centrality, the vertices must be reachable. Rdalityas defined as “the number of
neighbors or the cost it takes to reach all otleetices from it” [BEO5], which is also

called the degree centrality. It measures how nmanghbors are connected to the vertex.

For a graphG = (V, E) with n vertices, the degree centrall®y, (v) for vertexv is:

Cy(v) = deg() , Wheredegy) is the number of vertices to which the vertexrigdd by
P n-1

70



an edge. The minimum possible degree is 0 and &xémum possible degreenslThe
definition of centrality for a graph is: Let be the node with the highest degree

centrality inG . Let G'= (V',E") be thennode connected graph that

YA
maximizesH = ZCD(V') —-Cy(v;), whereH is centralization of the vertex. The
=1

centralisation is the degree to which the nodergral to its surrounding vertices. Then

V|
ZCD W) -Cp(v)
the degree centrality of the graph GQds(G) == H . The centralisation of

the graph determines the degree to which the déntohthe most central vertex exceeds
all other vertices. We used degree centralityrid & group of central people who are
facilitating the communication and influencing tb@mmunity either as an idea leader or
an idea radiator.

Clustering is a method of decomposing a set ofieatinto natural groups [BEO5].
Cluster analysis is used when one is dealing mghtypes of problems where one wants
to explore scattered data to discover whethertenqabdf a structure exists in the data.
Cluster analysis allows the researcher to disctheepatterns even with the most general
problem statement and measurement techniques leeitansain aim is to reduce the
“feature dimensionality” of a search space [DOOg Wsed the Betweenness Centrality

metric for clustering analysis [NGO4]. For a graphe (V, E) with nvertices,

. o, (Vv
betweennes€, (v) for vertexvis: Cy(v) = >’ 9a(v) where o, refers to the number

szvZtV Jst
s#t

of shortest paths from node¢ot and o, (v ) refers to the number of paths that passes

through nodes andt and also passes throughWe used Edge-Betweenness algorithm, or

71



also known as Girvan-Newman algorithm [NG04]. Weduthis algorithm because it is
an algorithm that is used often in a social netwan&lysis and serves our purpose. We
used a cluster analysis to discover a set of cameapts that are important to all
stakeholders.

In an open source community, people do not alwagsge in all discussions and
they do not openly reach consensus on what is it@apoto everyone. Often, some people
are simply silent about their opinions. Therefaigply counting the frequency of topics
does not provide a good indication of consensusheshby the community. We
hypothesize that we can gain much better insighssues using a social network
analysis, because stakeholders with similar backgts could have similar wish lists.
Additionally, people’s wish list may be influenckeg who they interact with more often.

Most network analyses are based on the Power La@dB The Power Law
assumes that there is a strongly connected cdheinetwork. It means there are several
core concepts that connect most people. The otrerepts are peripherals in the network.
In our case, we suspect that the participants esigddifferent issues based on what is
more relevant to their current job. People withinbackground and job functionality
may think alike and group together more, becausg tind to share similar experiences.
Therefore, each of these groups may have a coaethde is different from other people.

We expect that there are multiple clusters of cptg;eeach with a core concept
that is important to a particular group of stakeleos. People will naturally align

themselves to these clusters of concepts by thieifunctions.

72



4.4 Resear ch Design

Our research began when we patrticipated in theAgge Alliance Functional
Testing Tool workshop [AAO07, AA08]. This communitgeps track of each other’s
progress mainly through forums [AA11] and then nwete a year. We started our data
collection by going through the entries in the nagesboard. The very first message
starts on Sep 28, 2007. The data collection endddezember 2, 2008. At the time,

there were a total of 536 messages.

4.4.1 Important Categories of Story Test Driven &epment

First, we performed open coding on the messagesntWe found that there
were 226 articles that discussed important issuesmcepts. The remaining articles were
about announcements, workshop organizations andages with no important
discussions. The collection of these messagesitgrdtover a thousand pages. Out of
that list, we generated about 300 open codes wideghe contents. However, these 300
open codes were too granular and described too whetays about the specific tool
implementation features that we need to do furtieeing to reduce down to big concepts.
Through axial and selective coding, we reduceditbeussions down to 22 categories
that can explain most of the contents discussdideimailing list. The 22 categories are
presented in section 4.5. And then we assigneda#fies into 22 discussion categories.
One article may be assigned to more than one oategte decided to work with 22
broader categories, because we wanted to discayemexal trend in the discussion rather

than specific features that people proposed.

73



We called the people who proposed and discusse2Rthapics as “experts” in
those categories and we discovered that thereGafexperts”. We use the term “expert”
loosely. It simply means they are interested inttipéc and they hold some kind of
opinions on that topic. Some people appeared irerti@n one category, but nobody

appeared in all of the categories.

4.4.2 The Research Design for Degree Centrality

Next, we were interested in finding a person whappsed the highest number of
ideas that were also shared by others. The reasahi$ analysis is to find the person
who proposed the most common ideas and analyzeehigsion for Story Test Driven
Development. In other words, we want to figure thiet person (or people) with the
highest degree of centrality. The purpose of thgeke centrality analysis is not
necessarily to find the person with the most of aew innovative ideas, but the person
who has the most critical social connections t@ lkeimmunicate the ideas across
different disciplines, or to find the “deal breaker the community. This person would
have ideas that connect with ideas that most nuoiqeeople have also proposed in the
community. It is also equally possible that thegleavho are occupying the central
position are simply well versed in many disciplirresl share a lot of interests with many
people. We may also find whether we can use degmeteality to discover concepts that
are more polarizing than others due to the divigigpeoples’ opinions.

The 36 “experts” are represented with vertices SEH&6 “experts” are chosen,
because they frequently participate in the disamsdtach time a person shares the same

interest as another person, we connected two peofilean undirected edge. We

74



performed Degree Distribution Ranking on the grg}@8]. This algorithm measures the
strength of connections. It returns a local measfitbe connectivity to its neighbors.

The graph of Degree Distribution Ranking on ouladatavailable in section 4.5.

4.4.3 The Research Design for Cluster Analysis

Next, we wanted to find out which categories ay there discovered in section
4.4.1 have most supporters. To obtain the corenyiag concepts that are relevant to
everyone in this community, we used 22 categodderim a network graph. 22
categories are used as vertices and the edgeseappeople’s interest. Then we
performed the Edge-Betweenness algorithm on thehgieEhe tool we used is called
JUNG [J08]. This algorithm iteratively removes eslfimm the graph and reveals more
strongly connected vertices. As we perform monaiten, we eliminated vertices with
lower centrality. Semantically, it means each tineeapply the next iteration of the
algorithm on the graph, we eliminate less intengstioncepts. The final remaining
clusters of vertices are referenced and crossemrted by most of the participants in the
community either directly or indirectly through ethissues. Therefore, these final
clusters are the concepts are relevant and integest most people in the social network.

The aim of the cluster analysis is to figure outclilof 22 categories are relevant
to most people in the online community. We wandiszover the underlying concepts
that are fundamental to all of the discussion$is ¢community. If we find that there is
more than one cluster of categories, then it md@sommunity is separated by
different interests and expertise. If there is amig core cluster, then it means most

participants share similar ideas and interests.

75



4.5 Results
In this section, we present our results. We aragyt first present our codes
from the text analysis and then show the resutthi® degree centrality and the cluster

analysis.

4.5.1 Coding Results

In this section, we are going to present 22 categdhat were derived from the
300 featuresl/issues derived from the coding proddssse categories summarize the
major issues that were discussed by the peoptesionline forum. We introduce these
concepts with the support of the quotations froefirums. The number at the end of

the quotation is the message number in the forums.

Team Involvement

Description: Because Story Test Driven Developnimatlves more than just
developers, many contributors voiced that figuiaod how to entice the
rest of the stakeholders, including the develogesiers, project managers,
business analysts and customers, to participatesiStory Test Driven
Development is difficult.

Sample Quotations: “How to get different partsh@f organization - PM, devs, testers -

engaged. And how | failed in this” #2

76



Adoption
Description:  Simply building a tool or buying ataloes not always mean all of the
stakeholders will use the tools. The tool alonesdoat make Story Test
Driven Development work, but it must accompanyphetice.
Sample Quotations: “Selling such a kind of todike attempting to hit two balls on
the same ‘swing’. You have to sell the practiced seill the tool at
the same time” #41

Test Maintenance

Description: Maintaining story tests in a very kgyoject is extremely difficult. It
requires additional human resources to organizeetbtory tests, because
there is no tool that can efficiently organize themomatically.

Sample Quotations: “I think teams need to undedsthe importance of

maintainability in both their product code and thest/fixture

code.” #247

Economic Value

Description:  In addition to writing stories and ut@sts, it is sometimes hard to justify
writing and maintaining story tests, which can agdo a significant cost
for a large project. Without economic justificatjanis very difficult to
sell the idea to the management and to the tegqratdice Story Test
Driven Development.

Sample Quotations: “There were a couple of antiepas that tended to tip the ROI

into negative territory.” #249

77



Regression Testing

Description:  One of the many benefits of test dridevelopment is automated
regression testing. Then how do we perform regoegsisting using story
tests and reap the same benefit as test driveriagenent?

Sample Quotations: “You see the focusing benetineo - during the implementation

of a story. Whereas the benefit comes after they $i@as been

implemented.” #263

Compatibility/Integration

Description:  Story testing tools need to be confgbativith other testing tools and easy
to integrate with other testing tools.
Sample Quotations: “A shared vision of the mogionant next steps is... Better IDE
integration? More "productized"” tools ([...] RubyRHith

Fitnesse on a Mac [...])” #30

Usability

Description:  Story testing tools need to be ablsupport and communicate usability
testing and its results effectively. The communisgd the term usability
testing to refer to the automation of the usenfatee testing as well as the

usability testing (at the mock-up prototyping stage

78



Sample Quotations:  “[I’'m] a proponent of papertptgping and wizard of oz testing
on agile projects (code isn’t the only thing thah e tested!)”
#391

Communication

Description:  Story testing is about improving conmaation of requirements between
different types of stakeholders, especially wheséhstakeholders do not
hold the same kind of technical or domain knowledge

Sample Quotations: “Communicate and Learn seemmgetmost important project

goals and tools on the project should support th&t69

Business vs. Technology Solutions

Description: Story testing is not a technologalblem, thus trying to find a
technological solution for building a better todllwot solve the problem.
We need to define what can be solved by the s&styng tools and what
should be solved by a better business analysis
Sample Quotations: “I think it's important thateptance tests be expressed in
language, diagrams, whatever, that are indeperde¢hé

technology.” #131

Knowledge Representation

Description: We need a better way to represent dokreowledge in story tests.

79



Sample Quotations: “There are two types of knowdeggu can ‘know how’ to act or
you can ‘know that’ a fact is true. Computers dedhe latter;

experts deal in the former” #5

Notation/Language

Description: How do you write story tests using tfotations of the domain, but also in
a way that can turn into automated tests?
Sample Quotations: “I'm heavily influenced by Briemse of dynamic language for

testing.” #23

Graphical Visualization

Description: Non-developers may prefer to writeywy organize and communicate
better graphically. However, how do you integratepgics into
automated tests?

Sample Quotations: “We were trying to make the hiegd specification more

specific...and made it executable...” #58

Architecture

Description: The tests should be able to tegtaiis of the architecture: data, model,
user interface, etc. As story testing is meantafbstakeholders, different
stakeholders may want to view how the story is enmnted in different

layers of software architecture.

80



Sample Quotations: “It seems that we could run spamts of the ATs at the unit level,
could be at the services level, could be at the IBUYHIl. Each has their

benefits and drawbacks.” #217

Completeness

Description: How do you know whether you have ajiostory tests or covered all of
the testing scenarios? Does such concept have etenpks apply in story
testing?

Sample Quotations: “I think that implying logicaropleteness is asking for trouble.”

#61

Distributed Tests

Description: How should story testing tools suppistributed development teams and

how does story testing work in distributed enviremt?

Sample Quotations: “To mitigate these issues @ixadf strategies and tools have
emerged. They primarily fall into three areas: istiibuted and
incremental compilation and code generation g@dfistributed
test execution grids. 3. Selective testing toodd tdan dynamically

construct an appropriate smoke test suite.” #466

Different Perspectives/Skills

Description: The stakeholders have different |elis and abilities. How do you work

with these different groups of people?

81



Sample Quotations: “I really think it's a bettergpective for looking at the problem.
To see it from a requirement perspective, not apespective.”

#79

Exploratory vs. Test Automation

Description: How much of story testing should b&awated and how much should be
done manually? How does exploratory testing applstory testing
context?

Sample Quotations:  “I do not think the skills TiDD] are the same as traditional

testing skills, nor the same as exploratory testkils.” #222

Workflow

Description: What is the workflow for Story Testiizan Development in Agile

development environment?

Sample Quotations: “We instead should focus ofdimg tools that support a
workflow. When faced with dilemma between makinga more
flexible or more simplistic, we choose a path bkiag ‘which
support the Agile workflow better'? #131

Abstraction

Description: Be able to capture the knowledgegifiire tests at different knowledge

abstraction levels.

Sample Quotations: “This is all to do with the égoatim between data, information,

knowledge and potentially even wisdom.” #198

82



Terminology

Description:  What is the best terminology for $tdest Driven Development?
Different words for story testing mean differenthcepts to different
people. We need to use terminologies that are clear

Sample Quotations: “On the other hand, we shouddin'tinate the word ‘test' from our
vocabulary, because the 'executable examples'@naren't sufficient to

be considered a full test suite.” #196

Reporting

Description: How to report the test results tostekeholders? What is the best way to
communicate the story test results and developpr@gress using story
tests?

Sample Quotations: “Difficulty ensuring sufficievisibility and repeatability of results

across the organization - Inadequate reportingningkess
failures,..., need for archival and comparison ofdrisal test

result....” #104

Validation vs. Verification

Description:  Story Tests can be used for validatiod verification. Which process
should STDD support more?
Sample Quotations:  “System and Integration testiogvever, are more concerned

with the issue of 'Verification' than 'Validatiodt200

83



The quotations represent one of the opinions fitoepiarticipants. Some are
anecdotal evidences based on their experiencesoa jperson’s opinion on why he/she
thinks the concept is important for Story TestM are not arguing for or against
whether the opinions are correct.

Because this is a discussion forum with no regbriston who participates, some
topics had a very biased representation. For exgriglonomic Value was worded
negatively only. They were suggesting the diffigudt justifying STDD to the team. No
one gave a counter argument. However, some top@os given both sides of an
argument. For example, Exploratory vs. Test Auteomabad a very heated discussion
about what is test automation and how much shoelaubomated. Some topics were
proposed, but they were simply ignored by the comitgwr misunderstood, such as
Validation vs. Verification. The community quickigoved onto another topic before it

received much recognition.

4.5.2 Degree Centrality Analysis

The second aspect of the research was to findetsop with the most commonly
shared ideas with others. The purpose of the degnateality analysis is to discover how
central a person is in the discussion if we fornetwork based on who proposes the
similar concepts. As mentioned before, we wantefthtbthe people who are connected
to the most people.

The vertices are the “experts” and the edges a&ieititerests. The bigger vertices

mean two things: (1) they are connected to mosplpetue to their vast breadth of

84



interests; or (2) they are critical in spreadingas because of their highly focused and
specialized interest. Therefore, this graph ismeasuring the persons’ innovativeness of
his/her ideas. As seen from the graph, this comiypisvery tight with a lot of
connections in the group. Due to the possible breaprivacy and to avoid any
discomfort by the people who participated in théiseussions, we withheld their names.
We identify these participants through numberstantheir initials. However, because
the information is available publicly, we do nogf¢hat we had to anonymize their
identity too much. The initials inside the brackats the initials of their names.

Highest Degree Centrality: There are about a half dozen people with a highest
degree of centrality. They are V1 (A.B.), V3 (B,S/b (B.M.), V20 (K.J.), V26 (N.J.),
V27 (N.), v28 (P.L.), V30 (P.V.) and V34 (S.T.). @$e are top 25% of the population.
Most people who are ranked at the top only pasdieg in the discussions a few times
and expressed a narrow set of interests in theisigan forum. For example, the
following is the list of their interests for eachtbese participants. V28 (P.L.) only
appeared in Compatibility/Integration category &34 (S.T.) only appeared in Test
Automation. V27 (N.) only appeared in two of thegshbighly discussed topics:
Compatibility/Integration and Different Perspecti&kills. Only V5 (B.M.) is unique
from this list because he was the only person watbdvast breadth of interests and
contributed frequently. For example, V5 (B.M.) appel in 18 categories out of 22
categories. As a group, the people in this topdietegree centrality measurement are
interested in Different Perspectives/Skills and @atibility/Integration. Some of these

participants have already built STDD tools previgys.B., B.M., P.L).

85



Middle of the Degree Centrality: The people who are ranked in the middle of
the degree centrality are the idea leaders dugeiofrequent participation. They are V6
(E.H.), V8 (D.V.), V11 (E.P.), V14 (G.W.), V16 (JMV18 (J.S.), V19 (J.A), V21
(K.L.), V22 (L.C.), V24 (M.L.) and V25 (M.H.), V3BW.C.) and V35 (M.S.). This group
consists of about 40% of the population. Thisvery large list of people and they
together have a large range of influence in thernanity. Most of these people are very
vocal about their opinions and they participatemfiHowever, their influence is often
counter balanced with another strong idea lead®es.cbmpeting interest with another
contender puts them in the middle of the degre&aity. We couldn’t find dominant
concepts in this ranking.

Low Degree Centrality: The people who are grouped in the lower degree
centrality are due to (1) their lack of particijatior (2) a lot people already share the
same view. The rest of the population belongsimdhtegory. Their ideas are shared by
many people in the community or there is no stromgflict with their proposal so far.
Most notably, V13 (G.M.) is categorized in thisexggdry. If you look at his posting in [3,
#460], he was already able to get consensus fodéas by the community on the test
automation. V2 (A.M.) appeared in this category thubis vast breadth of interest in
many topics. He has 14 interested categories. MK (B.M.), V2 (A.M.) seemed to
have many overlapping ideas with rest of the comtyumhese people are likely to be in
a good position to facilitate consensus in the comity, because they do not have
opposing influences in the network. However, themo dominant concept in this
ranking either, because there is no one who péatigistood out and championed for an

idea.

86



We find that degree ranking is influenced by omeimber of interested topics in
the discussions rather than by their job functibpaBased on the participation in these
discussions, we find that the problem is gettirgsbpport from the middle-ranked
participants who are in a deadlock due to thefediig ideas. If the participant had a
focused set of interests in the tool building dsstan, they tend to rank higher. Some
participants in the lower-ranked degree centrdétyV13) were also able to obtain a go-
ahead from some people in the community although taseems that consensus
building is most likely to be led by tool buildeasthe top with a specific interest.
However, the motivations and ideas tend to comm fitte people in the middle of the

degree centrality ranking.

4.5.3 Cluster Graph Analysis

In this section, we are going to show what kin@éafisensus is reached in the
social network analysis by analyzing which of tfeecategories were supported by most
number of people. First, we counted the numbeinuég these concepts were discussed
in the forum. The frequency is available in Tabl@n2ler the “number of messages”
column. Different Perspectives/Skills appearedntiost frequently with 34 appearances.
This is also the topic most discussed by the peiogiee high ranking degree centrality.
However, simply counting the number of occurrenoey not provide deeper insights

about the community consensus as not everyone magiticipating in these discussions.

87



Figure 3: The graphs showing how the graph was transformed after iterations of
Edge Betweenness algorithm. Theleft graph istheinitial graph, and right graph is
thefinal graph showing that only three categoriesremained

The results are found in Table 2. A lack of substdus means the entire
community is actually very homogeneous in termw/ladit they desire. Unlike our
hypothesis where we assumed that people from diffdrackgrounds will cluster around
different concepts, the group shares the samengsi&e did not have a threshold value,
but we were interested to see what kind of clustewould emerge as we remove more
edges. We determined at the end that only thregodes remained: Exploratory vs

Automated Testing, Communication and Business &shiiology Solutions.

Table 2: Ranked Order of I mportant Concepts Using Edge-Betweenness Algorithm

Rank Rnk by Concept # of Msg # of Edges
Freq Removed

1 2 Exploratory vs. 23 204
Automated Testing

1 4 Communication 19 204

1 18 Business vs. Technology 3 204
Solutions

2 3 Usability 22 202

3 8 Abstraction 16 199

4 18 Distributed Tests 3 197

5 13 Graph. Visual. 8 192

6 1 Diff. Persp./skills 34 188

8 5 Adoption 17 179

9 10 Workflow 12 173

10 6 Compatibility/Integration| 14 165

11 12 Architecture 8 154

88



12 16 Valid. vs. Verification 5 141
13 9 Team Involvement 12 132
14 17 Reporting 4 119
15 6 Terminology 19 102
16 7 Economic Value 15 87
17 9 Completeness 14 72
18 15 Test Maintenance 5 57
19 8 Notation/Language 14 37
20 14 Regression Testing 6 19
21 11 Knowledge 11 9
Representation

It is also interesting to note that these vertiefishe core cluster one at a time as
we applied subsequent iterations of the algoritthimmeans there is a clear ranking of
“interestingness” in the community. The lack of sillssters in our graph (Figure 3)
shows that there are no strongly divided sub-gradpsdividuals who are interested in
specialized topics. An extremely homogeneous gregans that the group should be
able to come to consensus easily, but it also mimengroup lacks the diversity and no

focus groups exist in this community to deal witih-gopics.

4.6 Implication

The purpose of the analysis is to determine thblpros that pratitioners face
when they practice Story Test Driven Developmeuat,ib the process we also discovered
problems with tools and processes. The analysiprande better insights into what
type of people are joining the discussions, whatl kif topics are being discussed and
provide some insights as to what or who may beingss the discussions. The analysis
was broken down into three sections: finding oatithportant categories of issues in
Story Test Driven Development, degree centraliiglygsis of people who hold most

commonly shared ideas and cluster analysis tothiednost popular ideas.

89



4.6.1 Categories of Issues in Story Test Drivenel@ment

The analysis categorized the discussions into &joaes. There is a wide array
of topics that people felt were relevant for Stdgst Driven Development. It is
interesting to note that many people applied tgstomcepts into Story Test Driven
Development and instead of requirements engineeongepts. As one of the categories
mentioned, perhaps terminologies are one of thgesigoroblems in Story Test Driven
Development as the word, ‘testing’, seems to sugggseople that Story Test Driven
Development should be approached with more ofrtgstoncepts.

However, in general, the categories show that @eag@ mostly concerned about
issues that arise from working with different stasdelers. For example, some of the
categories that voiced such issues include commtiorg business vs. technology
problems, different perspectives/skills, reportikigowledge, notation/language, adoption
and graphical visualization. The other categorrescancerned with how to automate
these story tests that may not be written in mestfriendly notations. For example,
some of the categories that voiced such issuesdaaxploratory vs. test automation,
usability, workflow, compatibility/integration, cgoteteness, test maintenance and
regression testing. Finally, people voiced condkat the practice has to make sense
economically. It really does not matter how gooel pinactice is in theory if the

practitioners cannot afford the resources to pradtiem.

90



4.6.2 Degree Centrality Analysis

The purpose of the degree centrality analysis determine if there are people
with more influence in the STDD tool visioning comnity and then find out what their
message is. The people who appeared at the tomgaoikthe degree centrality built
their tools or expressed only a focused interesentain aspects of the tool. The result is
suggesting that perhaps the best way disseminafgrdictice is identify or build a story
testing tool to the community, which is currenthe tdominant way to disseminating
information on how practice Story Test Driven Deyghent. The best example would be
Fit [Fit11]. Because the practice is closely linkeith the tool, the assumption is that the
process will follow in the manner in which the taaln facilitate the process. These
discussions emphasize the challenges of findingigfn tool for writing and testing
Story Tests.

The network analysis can show which ideas currdrdiye champions. The social
network analysis can show which ideas have champglmough the degree centrality
analysis. In our result, the top tier groups cheatdggested that there were champions for
Different Perspectives/Skills and Compatibility#gtation. As shown in Table 2, the
lower extreme of the ranking shows that Knowledgkacking champions. Our findings
suggest that we need to seek more information trestomer’s domain knowledge
experts because their views are least represamtéd community. It is possible that the
problem is unsolved because of their lack of pguditon in these discussions. In addition,
the champions also suggest that the biggest proisiéme different skills, because not
everyone, especially customers, has the necesstinmase engineering background to

use these story testing tools. It is difficult take customers to use story testing tools if

91



they do not have the same kind of skills as thestbgers. If the customers cannot use the

tools, they will not be able to specify the stagts.

4.6.3 Cluster Analysis

We hypothesized that there will be clusters of epte that define this
community due to the diversity of stakeholders. ldegr, our results show otherwise.
There is only one core cluster with three highlyked concepts (See Table2).
Semantically, it means this is a very homogenoasmeand there is not much diversity in
the community. Or everyone in this community bedigin the same thing. What our
analysis is suggesting is that despite a largersityeof individual ideas, the community
tends to steer the discussion into a common themetione based which ideas get
champions.

The cluster analysis reveals interesting phenonfénst, the people in this
community share similar “expertise” and interesthe point where their degree of
interest can be ranked (See Table 2 for the rapkgich is certainly an unexpected
result. However, we didn’t expect this communityptohomogenous. The community
doesn’t have many domain knowledge experts, whighatns why knowledge is
represented least in the product visioning discumsgbee Table 2). The workshop attracts
a lot of developers and testers, but it does rncitthe domain experts (or the people
who occupy the customer role). Therefore, we sudpat the workshop does not
provide the customer’s view of story testing. Itswaade especially apparent from the
social network analysis. It suggests that we neesték opinions from the domain

knowledge experts more.

92



4.7 Threatsto Validity

In this section, we are going to discuss the vglidf our findings in respect to
internal and external validity. The study was perfed on an online discussion forum
organized by the Agile Alliance. Therefore, thesairisk of single group threats, which
applies when the result looks at a single groupreMonpirical studies are needed to
generalize our result with other similar discusdiamums. The research also looks into
one type of qualitative analysis: written documeifitee written documents may not
express the participant’s desires very well becaosee people may not have
participated fully in the discussions due to thrisy lives. Therefore, we cannot
generalize what people have written on the forurthes final words. In addition, the
discussion forum tends to attract certain typgseaiple - in this case, testers and
developers. The self-selection may lead to a biasaud of the software requirements.

We used our coding in a consistent manner, but oésearchers may derive
different codes. As Strauss and Corbin suggestitgtie analysis is an analysis of the
interpretation, but a systematic one. Thereforewillenot generalize our findings
beyond what the qualitative analysis can providestansights. For conclusion validity,
we have shown that our network analysis has shatendsting trends as shown by the
graphs and tables. However, as this was not a iftare experiment, we present our
result only as an explorative insight into the euatrstate of STDD tool visioning process
in the community. A qualitative analysis is impottabecause it can provide a bigger

picture for phenomena. As online collaboration ggpwe may be able to make better use

93



of the online community for gathering requiremeansl we propose that social network
analysis may be one of the methods for analysis.

Basili et al. stated that drawing a conclusion frame empirical study in software
engineering is very difficult, because any numidesamtext variables could have
influenced the result [BSL99]. For this reason,ceenot assume that results from this
forum can be generalized into an ideal STDD toaole ©riticism of empirical studies is
that the result may seem obvious after the fadtils is a misguided belief as some

important facts are discovered through the evideotlected.

4.8 Summary

In this section, we presented research that was tinaxplore different issues
related to Story Test Driven Development by analgZeedbacks from the Agile
practitioners. The research has discovered thes tire largely three issues:
communication due to the wide array of differeaksholders, test automation issues and
economic issues. The research has also analyzedmmaunity’s social networks to see
if there are popular ideas within the communityrditgh the cluster analysis, we
discovered that three categories were very populidre community: exploratory vs.
automation issues, communication with stakeholdetsbusiness vs. technology
solutions. However, some ideas were less repras@mtee community such as
notation/language problems, regression testingkand/ledge representations. We
suspect that the forums had a biased representsteople in terms of their job
functionalities and skill backgrounds. Therefore, suspect that certain concepts were

given much more emphasis than others.

94



CHAPTER 5: STORIESAND DEFECTS'

Chapter Overview :
Problem: What is the use

of story tests?

Study 1: Explore Objective:
Investigate the
] i traceability Study: A Large Software
Study 2: Traceability from stories to Development Project
defects using Jazz
Study 3: Successful
Application of STDD Outcome: We found two
attributes that show high
Study 4: Failed correlation between
Application of STDD stories and defects

5.1 Problem Statement

The use of stories to communicate requirementdbeas widely adopted by the
Agile practitioners and it is also very popularstTdriven development, where the
practice of writing the tests first, then writingetcode and automating the tests against
the code, has been very widely been accepted whkisoftware developer community.

Given that we are seeing thousands of new softixgireg developed for all kinds
of industries and disciplines, perhaps creatingigearsal story testing tools that all of
these different stakeholders can use may be inmgessnd difficult to implement in
reality. There are simply way too many variatiomskills and backgrounds. In addition,
Story Test Driven Development states that stortgtesed to be written by customers

[B99]. We have to assume that most of these pasipteoccupy the customer’s role will

* This section appeared in the following paper: PatkMaurer, F., Eberlein, A., Fung, T-s, Requieeis
Attributes to Predict Requirements Related Defe2fi8,|BM Annual International Conference Centre for
Advanced Studies Research, Toronto, Canada, N&Q, 2010. The copyright release form is attached in
Appendix II.

95



not have software development experience or trginiFheir backgrounds and training
will be very diverse.

Another way that we may want to approach in oueaesh is to analyze the
linking aspect of story tests exclusively. Onelwf benefits of STDD is the traceability
from stories, code and tests, which is one of #asons why STDD is a powerful
technique. The traceability from requirements tdecand to the tests using fixtures (such
as Fit fixtures) allows the team to identify theuss early on by identifying the relevant
stakeholders, requirements, code and defects.iffkbétween these artefacts allows the
emergence of communication in regards to the desmigintechnical issues. The link is
done by writing the automated story tests usingsteoch as Fit[Fit11]. Therefore, we
decided to approach our research by looking at @habl with traceability capability
can achieve. If we have the artefacts that reptélerbeginning (stories) and ending
(defects), then what software development attrbuteuld link these two factors with
highest correlation. The attributes with highestelation is what we may need to
optimize with Story Test Driven Development, be@stry tests are the link between
the two. Finding such attributes may give moreghts into the relationship between
stories and defects. The analysis may be ableotade insights into the hidden factors
that we need to optimize using story tests.

To facilitate this research, we analyzed data feodevelopment team that used
stories, test driven development and an organizatimol that has the capability to trace
from stories, code to defects, but they did not$ieey Test Driven Development. In our
case study, we used the Jazz development toolragualy object [Jall]. The Jazz

functionalities have the potential to address ttoblems that people mentioned in

96



Chapter 4 either directly or indirectly, such as#action (organize the project based on
teams and components), Communication (dashboaxgd)oatory vs. Automation
Testing (unit testing and creating work items facletest), Compatibility/Integration
(though Jazz APIs), Architecture (component vieviglidation vs. Verification
(dashboard), Team Involvement, Reporting, Econdraicie (easy to buy the Jazz
platform, intuitive to use and it can be readilgdi®ut-of-the-box), Distributed Tests
(Jazz is a server based technology), Graphicaldimation (Jazz comes with a user
interface), Completeness (integration with the tests), Test Maintenance and
Regression Testing. Validation vs. VerificationExploratory vs. Automated Testing
would be embedded in the workflow process rathan flanctionality of the tool.
However, it is something that can still be addrdssihin this type of work environment.

Jazz offered a lot of attributes that can be dateedto get better understanding
of the development progress. We want to find ostafies can be linked all the way to
the defects and vice versa. If so, then we wafihtbout whether a tool such as Jazz can
tell us which attributes are most relevant forthenber of defects at the end. Our
research will help shed more insight into whateedwlity alone can achieve and what
Story Test Driven Development should achieve intamdto traceability in order to
stand as a separate but critical technique thathmer techniques can replace.

The organization of the Chapter is as follows. ®ach.2 motivates our research
with the background information. Section 5.3 ddssithe development project, the data
of which we analyzed. Section 5.4 describes thearet design. Section 5.5 describes
the results. In Section 5.6, we discuss our finglif8ection 5.7 describes the threats to the

validity of our research. Section 5.8 summarizesfithdings from this section.

97



5.2 Background

The aim of the research project is to data minteugtsire on the relationships
among requirements, people and software defedésge software development project
that used stories, test driven development andjegirdashboard.

The discipline of statistics and data mining arthlmmncerned with discovering
structures in data [H99]. A large body of data magtain some valuable information
which may provide more interesting or useful intsghto a phenomenon under study.
Statistics is generally concerned with how to mstieéements about a population by
examining a sample of the population. On the otlaexd, data mining is concerned with
an entire population. In such situations, statidtcodel building is used to find
significance of the model fit rather than the ptubstic statement about the
generalization ability from a sample [H99]. Datanmg deals with searching for
variables that may have good predictive abilitied &ty to find potential explanatory
variables. In data mining, we are more interestetthéexploratoryaspect of discovering
potentially interesting relationships between meaagables. In contrast, statistics is a
confirmatoryanalysis that builds a model derived using theca#lii selected variables
applied on a sample [H99].

In this Chapter, we report the results of data ngra software repository of a
team that uses stories for communicating requirésn&e data mined their development
repository covering over a year of project lifetitoefind out if any interesting structures

or patterns exist on the relationships among requénts, people and defects.

98



We aimed this part of research at defect prediaimh decided to work from
defects to requirements backward to find out iledes can be traced to specific stories.
Once we have the defect prediction model, we céerihine which attributes have the
highest correlation when they are traced from dsfexrthe relevant stories.

Our aim of producing the defect prediction modaliféerent from traditional
defect prediction research that is based on codfedDprediction is a research area with
a long tradition that aims to find metrics that available in the early phase of software
development and that are good defect predictorsS08pP. However, defect prediction
research tends to evaluate defects from the cadage onwards using attributes that are
available at the coding stage, such as code chues,of code or the number of file
changes [NBO5]. Our purpose is to find the releatrtbutes at the requirements stage
that are related to stories in order to find ouethler such attributes may also have
relevant in STDD environment.

Based on the Jazz system’s change history ancethi@gowho work on the
project, we hypothesized that easily attainableireghents-related attributes could exist
in our data that have high correlation with defedsnt. Our reasoning is that
stakeholders may hotdcit knowledgeabout a project’s health, which may manifest
itself in somehuman-based attributabat can be measured at the time of the
requirements specification. Therefore, our hypathissthat there are measurable story
attributes that can provide reasonable defect ptiedi We are interested in what these
attributes are in order to investigate whetherlama they are related to Story Test
Driven Development in our subsequent research.

In the following sections, we present two approadioehis particular research.

99



5.2.1 Defect Prediction

A defect is a common terminology fofault in a program [Ma08]. However, in
our study, we simply identified defects to meandbéect workitem. Any work items that
were labelled as defect work item by the team rsimiered a defect.

Defect prediction is a research area that aimssavar the following questions
[ME98]: 1) Find metrics that are available in tteglg phase of software development
that are good defect predictors; 2) Develop motiescan be used for defect prediction;
3) Evaluate the accuracy of the model; 4) Calcutlaecost of utilizing the model in a
software organization. Defect prediction requirasaus kinds of knowledge repositories
that can be easily mined for obtaining the staful®project at a given point in time.
People have used fault databases, code repositorieteature request databases for their
defect prediction analysis based on code [ME98].dxample, some of the work done in
defect prediction includes [ME98, NB0O5, K93, OWBBAGNM96, ZNO4]. Currently,
the estimation for these code-based predictorddtects has reported success rate of up
to 70% to 89% [NBO5, ME98]. Nagappan also examihedate otode churron
Windows Server 2003 code and determined that ipcadict with 89% success rate
where defects will be found.

Unlike these research projects, our aim is to fintlwhether there are attributes
present in the requirements specification, pawmidylstories, that can be used to trace to
the defects using stories and their relevant aitter Our aim is not about deriving a
defect prediction model that can predict bettentbade-based models. We are simply

inspired by their research models and applied thethods to our research. As far as we

100



know, defect prediction using requirements spediifon attributes available in stories

has not yet been attempted.

5.2.2 Network Analysis

The motivation behind network analysis is to untéerd the structure and
evolution of the relationship between entitiesrt Raof our research suggested that there
is a strong correlation between the number of $talkiers and the defects at the end,
which we will explain further in the subsequent Gieas. Therefore, for part 2 of our
research, we wanted to understand better theaetdtip between these people based on
the trail of artefacts that they left behind anditheam organizations. Our main interest
in employing network analysis is to analyze theodletogy of how the stories eventually
created defect work items and then discover whetlvark attributes had the closest
network distance linking these two artefacts.

Many natural networks have a few nodes that haveymare connections than
the average node has. Therefore, most real wotldonks emerge using the Power Law
[Ba02]. Network analysis can also be performedaltware engineering artifacts.
Zimmermann et al. performed a network analysisioaries of a single project [HHO4].
Hassan et al. looked into research trends by paifgr network analysis on the reverse
engineering community [JSG+06]. Jacovi et al. idexat sub-communities within the
CSCW research community using network analysisudnighed research papers in the
past CSCW conferences [S66]. The network of howpleeare related to each other
based on their team organizations and work itemspravide better insights into

whether social networks contribute to the defattsome predictable ways.

101



One of the important concepts in network analysthe difference betweeago
networkandglobal network An ego network is concerned with its immediate
neighbours. Each node in the network has an egeoniet A node is often called “ego”
in network analysis [FO7]. The global network lo@tghe entire nodes. We want to find
out which type of network is more relevant for te&tionship between stories and

defects.

Figure4: Thenodesinside alarge circle are the ego network for the node located in
the middlelabelled as ego node. A global network refersto all the nodesin the
picture.

5.3 Case Study

We used the data large software development prisacta company that we
will only identify as Company A for our analysisHiRP03, CHS+03]. We obtained a
large repository of data that contained informattorhow Company A produced their
product. The repository has many variables thatbeaexplored, which provides an
interesting case study for data mining. As mentibkata mining is an exploratory
analysis. Our aim is to find out whether any inséirgy structures or patterns exist in the
given data that may provide insights into the reteghip between requirements (stories)

and defects and whether such information is emhkadthe repository produced by the

Jazz team.

102



In the rest of the section, we will explain thezlaml Jazz is a development
environment produced by IBM to support collabonatim software development. The
Jazz system includes an integrated programming@mwient as well as communication
and project management tools [CHRPO03]. Companydiahsubstantial repository of
development data that was created during theirldpaeent project using Jazz. We data
mined their repository for our study. The data wiacted includes data from December
8, 2006 to June 26, 2008. 151 contributors (useowads) exist in our data, but only 93
unique users were relevant to our study becausgsothd not participate in the project
during our time frame in terms of work items thahde traced from stories. The active
users are anyone who were part of the developreant and held a user account to
access the repository. The teams are distributed I different sites, including the
United States, Canada and Europe. Seven of thesengre active in the development
and testing. The development project had 90 compene

Company A used the “Eclipse Way” methodology faitluevelopment
[CHRPO3, CHS+03].. Each iteration consists of seels. A project management
committee sets up a goal for each iteration andksrdown the goal into features, called
work items. Awork itemrepresents an assignable and traceable taskathdtec
categorized into different subtypes, such as defeck items, story work items,
enhancement work items or retrospective work itédeash work item was then assigned
to a development team. In addition, each work itexth a specific owner who tracked the
work item from the beginning to the end. Howeveanypeople could contribute to the
work item, such as contributing to its implemertatijoining discussions and

subscribing to the work item to keep an eye opritgress. Developers who are only

103



“subscribed” to a work item do not contribute ®iitplementation but they keep track
of its development because it might be relevatiiéar own work. Each work item
contains information about its time of creatios,time of completion and the person
assigned to deal with it. The team coordinatesrimementation effort by commenting
on work items.

One of these work item types is Story. This iswloek item that specifies a goal
(or a requirement). Another type of work item ishBncement. When we mention a
story,we mean both Story and Enhancement work itemsdé#fect is found, a work item

of type Defect is created. Here is an example story

Provide an integration option for the Visual Studleent:

Our current option for writing an SCM client is tise a combination of server
REST and command line tools. It turns out thatctmamand line (CLI) is both too slow
and far from feature complete. In addition, callithg CLI and parsing stdout isn't an
option for providing a rich integration into anothEDE. This story is about enhancing
the client side integration to allow:
- arich and feature complete visual studio clienany other client written in Java or
another language.

- an integration which is as fast as the currenCRJ]1 client.

- an integration architecture which ensures thatttee X added in the RTC Ul
can easily be leveraged in client Y.

- a CLI with feature parity with the RTC Ul for imgved command line usage

and scripting.

104



In the case of a defect, the team goes througlora discussion phase to make
sure the work item is indeed a defect beforedisisigned to a team member who will fix
the defect. If the work item is vague, the team iners can ask questions for
clarification. The Jazz system allows work item$&éodinked to each other if they are
conceptually related. For instance, if a defectlmatraced to a requirement, these two
work items can be linked. We use these links temene if a defect is a requirements-
related defect. i.e., for each individual requiretm@vork item), we measure the number
of linked defects. The developers may not haveuoted all links, but our data size is
large enough to have significant results despissiate missing links.

In our research with the Jazz development datactieéfers to any work items
that are labeled as defects in the repository. Rements-related defects are defect work
items that can be traced to a story work item. \W&ad that 94% of the defects can be
traced to one or more of the story work items. fidet of the defects appeared without
any relationship to stories. In the Jazz reposjtarstory work item can be — and often is
— linked to several defect work items. The proa#dsking can lead to very complex
links of defect fixes. The Jazz system maintairesé¢hinks as a part of the tool's
functionality. What we are interested in is whetthere are some overarching structures
or patterns that arise from these individual libk$ween work items.

Developers report the relationship between wonkg®ecause they think that
knowledge about the existence of other work iterag help solve the problem. In other
words, the links between story work items and defexrk items are based on human

understanding of the problem, not an automatic@asson generated by the code. In this

105



sense, the linking between defects and story werks is different from linking of the
change sets to the bug reports or linking of bygms to failed tests, which are
automatically generated by Jazz through code sionis. Because the linking of stories
to defect work items represents a human understgradithe problem, there is no
absolutely right or wrong way to interpret what timking may mean other than that the
developers who were assigned to the task thoughthlby were relevant and important.
When individual developers make these links to Iselpe one’s own problem, it may
eventually emerge into a network of linked workntethat may together have greater
meaning. In addition, there is no valid instrumientheck whether these links are right
or wrong. These networks are different from netwdhat you would generate from code
dependencies or other code-based metrics, bedaitiaks are inherently based on
gualitative reasoning that came from each developer

Once the work items are generated and assignedptiemust be submitted and
managed through Jazz. To coordinate the implementeitegration, each team commits
their source code to their Stream. Streams allaxh &2am to keep different versions of
components in order to make their implementatialependent of other teams’ changes.
A continuous integration process takes place aamtlevel. Each team makes changes to
the code using Change Sets. Once the team hasle stasion of source code within
their stream, they commit their work to the Proje¢égration Stream. A build can be
produced from each of these streams according fees@ds of time. We combined all of
these workspaces and obtained the latest stabe abde as well as the code history for
our analysis. The entire data, including work gemmny file attachments, code base, all

of their history, is about 21.3 GB. The code basesists of 2.34 GB of data. Our

106



extracted data includes data from December 8, &8®06ne 26, 2008 with a total of

2,860 story and enhancement work items and th&ij029 related defect work items.

5.4 Resear ch Design

We modeled our research similar to [NBO5, ZNO8]weduer, we looked
specifically at non-code attributes and considéhedypes of information that are
available at the requirements level. We used the d&b interface as well as Jazz Team
Concert (which are tools within Jazz) to extradadalevant for our analysis. Then we
built a script that calculates the metrics useduninvestigation.

We present all the variables that we explored wéretiey had correlations or not.
Data mining is about exploration; thus, negativeralations are as interesting as positive
correlations. As mentioned previously, data mirigigbout discovering relationships.
We categorized our variables for the purpose ddiabtg explanatory power, but the
results were originally obtained from an explorgtprocess.

For the purpose of presentation, we categorizedttiéutes into point and
aggregate variables. The point variables are ategowhose values can be obtained from
a single story. For example, a time estimatiomtplement a story is available from a
single story. The team may decide to change the éistimate at a later time if new
information becomes available but the estimatidarmation is still available from one
story.

On the contrary, aggregate variables are valugsatbaaccumulated across
multiple work items. Therefore, it is not possibdeobtain these values using only one

value from one story. For example, the number lated stories may change over time as

107



new requirements are added to the project. Thexeéostory with only one related story
may have two or more related stories at a latertpoitime as additional requirements
are added to the project.

In our study, the dependent variable is the nurobdefects and the independent
variables are the point/aggregate variables thaareeoing to present below. We are
trying to map one-to-one relationships between e&these variables to the number of
defects. In other words, we are measuring whetteetindependent variables have an

influence over our dependent variable, the numbédetects.

5.4.1 Point Variables

For the point variables, we have the followingibtites for each story:

1) Time Estimates: The time estimates are developers’ estimation of lomg a
story will take him/her to implement. Not all ofetlstories had time estimate information
available. Our assumption for data mining the testmates is that some tacit knowledge
about the difficulty of the implementation may leflected in the time estimates; some
structures or patterns may arise from the estimdtends. For example, stories that are
expected to take longer to implement may be mdfiewli (e.g. more complex or simply
more comprehensive), thus could be prone to mdextie Since we do not have code
complexity information at the requirements stagewa stated that we designed our
research to only consider information availabl®pto coding), time estimates may
provide an alternate way of predicting the develsparojection of the possible code

complexity.

108



2) Priority: Priority is measured as “Unassigned”, “Low”, “Metitior “High”.
This measurement is the stakeholders’ view of wtherstory should be implemented in
comparison to other stories. A story that is assiiga high priority should be
implemented before a story that is assigned a loovity.

3) Ownership: Each work item usually has an owner who makes thatethe
work item is finished. This is usually the persomoainally signs off the work item as
resolved, although not always. We can interprettreelation to mean that someone
who owns many work items may have better knowleddgmit the stories’ health because
he/she has an understanding of how different wierks are integrated together. Or
he/she may have a better idea where defects cameg ¥hich may not be so obvious in
a large project. On the contrary, a person maygetwhelmed by many work items and
then make mistakes. Either a positive correlatioa negative correlation would confirm
that prediction can be made based on this vari&gecorrelation means the ownership is

a poor predictor for the possible number of defects

5.4.2 Aggregate Variables

1) Number of Indirect Stakeholdersfor the Story: We define a stakeholder as
any user who had an account in the project repysitdis includes developers, user
interface designers, requirements analysts, tegtggct managers, etc. We define
indirect stakeholders as people who report defagtfrave not been involved in the
initial definition of the story. For example, a stavork item has owner and people who
contribute to the discussions. If the related defeark item is reported by someone who

did not appear in the story discussion, this persadentified as the indirect stakeholder.

109



If there is a positive correlation, it suggestd thefects arise due to not recognizing the
true extent of the indirect stakeholders. It caalkb suggest that people did not realize
how the introduction of the new story will influemsomeone else’s work. A negative
correlation would suggest that having more indisgakeholders actually leads to less
number of defects. If such a trend does appeamaehave to investigate more as to
why. No correlation would mean that this variald@ot a good indicator for obtaining

defect predictions.

2) Number of Related Stories Based On Shared Defects: We identified those
defect work items that are linked to two or mo@gtvork items. We interpreted these
defects to mean that there were unexpected intensdbetween requirements. If there is
a positive correlation, there is strong support tledects arise due to unexpected
interactions between requirements or a larger nétabinteractions between work
items. If defect fixes require knowledge about ostery work items, the person who
implements the fixes needs to consult with othemtenembers. The need to be aware of
many work items could mean that there is more piatieio change the behavior of
requirements that someone else wrote in an uniatenay. If there is no correlation, it
suggests that story interactions do not provideediptable trend that can be used for
defect prediction.

3) Story Creation Timein Relation to Defects: We decided to test whether
introducing a story at a later time (after someaiige code implementations) leads to
more defects. We measured the time when a storyntrasluced to the project and

measured the subsequent number of related de¥&bike introducing new stories later

110



in the development stage does not directly measgr@rements change, it does
represent a lack of such requirements informatieforie they were introduced. Since
some implementation had already happened befose thew stories are introduced to the
team, the developers may have designed code withednowledge that such
requirements may be coming up in the future. Tipassible scenarios could exist. First,
stories that were introduced earlier in the progectld end up getting more related
defects as time progresses, because new requiremeagtundo the original
implementation. Second, the new stories could laavigher number of defects, because
the new implementation has conflicts with the olidgplementation. Or there may be no
correlation. Again, a correlation can provide sarues as to whether the “Story creation

time in relation to defects” provides trends fag fhurpose of predicting defects.

5.4.4 Null Hypothesis

The null hypothesis states that there is no cdrogldbetween any of the six
attributes suggested above and requirements-radafedts. Literature suggests thata
value below 0.05 is considered to have high stegissignificance [FPP98]. If the
statistical significance is below 5% [W71], we gng to suggest that the alternative
hypothesis, which is that there is a correlatioiwken the selected attribute and the
occurrence of requirements-related defects, is@tgpg. Based on our data, we cannot
absolutely prove the relationship between thelattes and the occurrence of
requirements-related defects, but it may suggestthiere may be a strong relationship.

We are looking at the attributes individually witha@onsidering possible interactions

111



between attributes. Therefore, we are going tooperthe analysis on each attribute

separately.

5.4.5 Network Analysis

For Part Il of our analyses, we look at the netwmatkerns in our data based on
the attributes that show the highest correlatidhese associations between work items
and people are drawn up into a large network graph.purpose of the network analysis
is to provide explanatory patterns as to how aiteb are related to each other. We
measured the following attributes for ego networks:

Size The size is the number of nodes in the ego nétwbincludes nodes that
are one step away from the nodg,

Two-step reachThe two-step reach measures the percentage of tmatesan be
reached in two directed steps from the node.

Brokerage:The brokerage is the number of times the node appeather
nodes’ connection paths. The brokerage value weldigh for a node that is connected
to many nodes, because it can play the role obkeloiin connecting two unconnected
pairs. The measurement is obtained for each ege.nod

Effective SizeThe effective size is measured by the number afdétghbours
minus the average number of directed ties betwaesetnodes. Let’s suppose there are
three nodesy;, n,, s, andn, andns have a directed connection amdhas a directed
connection tan,. The effective size fam is 2-1=1.

We measured the following attributes for the glatetivorks.

112



Degree CentralityThe degree centrality measures the number of deperes
for each stakeholder. For ego networks, we measorBagree Out-DegreeandIinOut-
Degreeof a nodeln-Degreemeasures the number of incoming connections todke.
Out-Degreaneasures the number of outgoing connections totties nodes. ThimOut-
Degreeis the sum ofn-DegreeandOut-Degree

Betweenness Centralitfhe betweenness centrality measures how many times
the node appears in the other nodes’ shortest patbglations. First, we need to
calculate the probability index of communicationhzabetween two nodes. If the
network offers more than one shortest paths betweemodesp; andn, then all of
them have the same probability to be chosen. Sepmos of these shortest paths contain
the noden; and letgj(n)) be the number of shortest paths linkmandn., then the
probability thatn; is beweem; andny is gi(ci)/gix. Then the betweenness centrality is

measured using the following formula:

zgjk(ni)/gjk
Ca(c)=d* ______ where
o) =" g -0(g-2

Cgis the degree centrality agds the number of nodes in the network.

Finally, we are interested in the team assignmetiteostakeholders. Instead of
categorizing developers individually, we put theroiteams. There are 90 project
components. Each component is assigned to a temch.tEam has its own stream. A
stream is a workspace with a separate branch isaiee repository. Each team
commits their code into their stream only. We wdrttesee if dependent defects are

found by the members inside the team or membessdaubf the team.

113



Percentage of People Outside of the Tebmthe ego network, we want to find
out how many of these connections are with peopiside of their team. If this value is
high, it denotes that requirements-related defaesnostly found when there is an
interaction with outside teams.

Associated Team Area& person is assigned to many team areas or rnase a
depending on their job description. We want to knbaperson assigned to many teams

and overseeing many projects could detect mordresgants-related defects.

5.5 Result

In this section, we describe the results of the cigdy performed on a large
development project in Company A that used Jazazi@®e5.5.1 presents the correlation
analysis between the requirements attributes anddtle attributes. Section 5.5.2
presents the regression analysis and section fw&sénts the data splitting in order to

measure the ability to predict system defect dgnsit

5.5.1 Correlation Analysis

We used Pearson correlation coefficient [FPPO&Etdfy the correlation between
the specified attributes and defect occurrencess®a correlation is preferred when we
are working with raw data. The closer a correlatiatue is to -1 or +1, the higher the
correlation between the two attributes: +1 meany tre perfectly positive correlated
and -1 means they are perfectly negative correl@ealue of O indicates that the two
measures are uncorrelated.

The Pearson correlation values are shown in Tablée3based our threshold on

Colton’s rule of thumb for interpreting the sizeawirrelations, which is follows [C74]:

114



Correlations from 0 to 0.25(or -0.25) indicate lttor no relationship; those from
.025 to .50 (or -0.25 to -0.5) indicate a fair degrof relationship; those from 0.50 to
0.75 (or -0.50 to -0.75) a moderate to good relasioip; and those greater than 0.75 (or

-0.75) a very good to excellent relationship.

While the correlation coefficient measures strengthof the relationship, the
significance measures the probability of an evectioring by chance only. The
significance is measured using a probability lelexioted ap. A smallerp means that
the result is unlikely to be caused by pure chaAsalefined in the research design
section, g value that is smaller than 5% is considered sigaift for our research and
we will reject the null hypothesis [C74].

The result is presented in Table 3. To summarizeobserve that there is a strong
correlation relationship between the number of cisfand the

* Number of Indirect stakeholders

« Number of Related Stories

The significance value for Story Creation Time i@l&ion to Defects is higher
than our threshold of 0.05; therefore, we canndierany general conclusion about this
variable and it is eliminated from the candidatealle. However, the other variables

provide high significance values.

115



In terms of Time Estimates, Priority and Ownersli; data shows that there is
clearly no relationship between these variablesthedlefects count. They all show high
statistical significance to support our observati®ee Table 3.

Based on our result, the two variables in the agageevariables category, the
Number of Indirect Stakeholders and the Numberealaied Stories, both show high
correlations with the number of defects. The peoariables all show no correlations with

the number of defects.

116



Table 3: Correlation coefficient between the specified story attributes and the
number of defects

Attributes Pear son R? Significa | Mean Variance Std. Dev. | Std.

coefficient nce (p) Err.

(r
Time Estimates -0.0222 0.001 <0.01* 111983 148338 1209.91 110.91
Priority 0.0602 0.004 <0.01* 2.04 0.07 0.27 <0.0%
Ownership -0.0316 0.001 0.04* 772.8¢ 1,302,499.28141127 21.31
Number of 0.9048 0.819 <0.01* 5.36 37.56 6.13 0.11
Indirect
Stakeholders
Number of 0.7591 0.576 <0.01* 17.01 1,417.89 37.6 0.70
Related Stories
Story Creation 0.0144 0.001 0.22 332.41 22,465.18 149.88 2.8
Time in Relation
to Defects

*Significant at alpha=0.05 level
Table4: Regression Analysis
Attributes Regression Model Standard Error | MMRE® PRED® (0.3)
of Estimate

Number of Indirect  x156 0.30 0.27 0.76
Stakeholders 4 355
Number of Related | y=(0.009x+1.244% 0.37 0.20 0.87
Stories

® MMRE: Mean Magnitude of Relative Error
® PRED() : Prediction at level p where p is a percentageeféirs to the number of cases in which the
estimates are within the p limit of the actual eaudivided by the total number of case.

117



5.5.2 Regression Analysis

The purpose of a regression analysis is to devahtopquation of a line that best
fits most of the data points. The Standard Errdéstfimate is calculated to check for the
discrepancy between the data and the regressiorlfW@1]. This is the distance
between the actual data points and the regressien |

At this point, we narrowed down our analysis tottie variables that have
shown high correlation coefficients: the Numbetrafirect Stakeholders and the Number
of Related Stories. Therefore, we performed theasgion analysis for the two attributes
that show statistical significance and strong dati@n.

Our analysis shows that a power regression andyaqooial regression fit our
data best as seen in Table 4. The number of inditekeholders has a good regression
model with a relatively small Standard Error ofiibstte. The correlation analysis and the
regression analysis both confirm that there areeddositive trends in the relationship
between these two variables and the number of tetleat are beyond a random
occurrence of events. MMRE of <0.25 and PRED (6f3)0.75 are considered to be
highly acceptable model of accuracy [PK08]. The MMa&hd PRED(0.3) in our analyses
are both in the range of highly acceptable numlveing;h suggests that our regression

model can fit our data with good accuracy.

5.5.3 Data Splitting
Based on our analyses, the variables that showstenty high correlation with
the defects are the Number of Indirect Stakeholdedsthe Number of Related Stories.

Therefore, we used the data splitting techniquéherNumber of Indirect Stakeholders

118



and the Number of Related Stories. Data splittiB(Q5] is a technique to independently
assess the ability to predict from a populationgamVe randomly select two thirds of
the stories (1906 stories) from a population tddbthie prediction model and then use the
remaining one third (954 stories) to verify thediotion accuracy. Then we find out
whether our variables still hold the predictionligpeven with different training and
evaluation values.

Using the regression equation, we estimate thectldénsity for the remaining
third of the stories. Then we compare the estimasdaes with the actual values for the
remaining one third of the stories that were usedHe evaluation. We ran the
correlation analysis between the estimated andibetues. A high positive correlation
coefficient means there is a positive relationshifhe attributes being measured and the
estimated defect density.

All trials show consistent positive correlation astdtistical significance as shown
in Table 5 and 6. The magnitude of the correlapimvides the sensitivity of the
predictions. A higher correlation means the preaiichas a higher sensitivity. The result
shows that the Number of Indirect Stakeholdersvisrg good predictor of defect density

and the Number of Related Stories is a moderagead predictor.

119



Table 5: Data Splitting Regression and Correlation Analysisfor Number of Indirect
Stakeholders

Trial # R? Significance

()

Random 1 0.8248 <0.01*
Random 2 0.8102 <0.01*
Random 3 0.8199 <0.01*

*Significant at alph&0.05 level

Table 6: Data Splitting Regression and Correlation Analysisfor Number of Related

Stories
Trial # R? Significance
(P
Random 1 0.5432 <0.01*
Random 2 0.5628 <0.01*
Random 3 0.6294 <0.01*

*Significant at alpha=0.05 level

5.5.4 Networks of People and Stories

The result so far suggests that the two varialiesnumber of indirect
stakeholders and the number of related storiespratict the number of defects very
well. From a statistical perspective, it suggelsét these two variables are good
predictors of the number of defects. The next qoess how these two variables relate to

the number of defects and provide some charagtsrabout their relationships. To

" Coefficient alpha is the probability that you wiltongly reject the null hypothesis. It is alsoereéd to as
a false positive.

120



evaluate the nature of their relationships betviberstakeholders and stories, we
analyzed how each person (stakeholder) is linkesdicdides. Two people are linked on a
network if they both share some work for the satagysTable 7 shows the statistical
analysis of how these values relate in terms oht#tevork measures.

As shown in Table 7, size, two-step reach, brolkeaayl effective size are
showing high correlation. Table 7 also shows thatlietweenness measure shows very
high correlation, but the degree centrality measioes not. What this means is that the
person who can explain the most number of relat@ies using the smallest number of
related stories (in other words, shortest path eetwstories networks) is the most
important person, not the person who is linkecheorhost number of stories. Finally, the
Percentage of People Outside of the Team and Astedcieam Area show moderately
positive correlations. It means that there are sarasonable trends that defects are
discovered by people outside of the immediate tmam and more likely to be detected

by people who are working on multiple teams.

121



Table7: Correlation Analysis on the Network M easuresfor Stakeholdersand

Related Stories

M easur es Pear son Significance

Coefficient (p)

(r)
Size 0.9182 <0.01
Two-Step Reach | 0.9367 <0.01
Brokerage 0.9096 <0.01
In Degree Cent. 0.4356 <0.01
Out Degree Cent.| 0.26625 <0.01
InOut Degree C. 0.2617 <0.01
Betweenness 0.5130 <0.01
Effective Size 0.9182 <0.01
%Outside Team | 0.6775 <0.01
Associated Team | 0.5475 <0.01

5.5 Discussion

In this section, we discuss the results of ouryames. We have shown through our
analyses that the Number of Indirect Stakeholdedstlhe Number of Related Stories can
predict thetrendsin the number of defects. In addition, we havenshthat stakeholders
and stories are related in terms of size, two-gtaph, brokerage, effective size and
betweenness centrality. In addition, we have aiscostered that people outside of the
core team may find more defects (than the origieain members) as well as people who
participate in the development of more than onepmTent.

The other attributes, such as time estimationripyiand ownership, did not show

that they were good predictors for the number éécs. The “Story Creation Time in

122



Relation to Defects” did not meet the significattweshold; thus, this value is
inconclusive. However, what is important from oumdings is that trends for the number
of defects can be predicted from requirementsbaies. In this section, we are going to
discuss the implication of our findings in termsadfat this could mean for defect

prevention.

5.5.6 Indirect Stakeholders and Related Stories

The two attributes that show very high correlatianth the number of defects are
the Number of Indirect Stakeholders and the Nunob&elated Stories. Both of these
numbers are quantitative; therefore, they can besared at any given point in time.
However, both of these are aggregate variables;hwhean these values cannot be
measured alone or only at one point in time. Rathely grow and change as more
stories and people are added to the project.

The findings can be interpreted in many ways. @8uit suggests that the
interaction of people really matter in explainihg thumber of defects. There is no doubt
that people are important in requirements engingeffheng and Atlee states that
“successful RE involves understanding the needsefs, customers and other
stakeholders; understanding the context in whiehtdhbe-developed software will be
used; negotiating and documenting stakeholdersiiregpents and validating that the
documented requirements match the negotiated esgaimts” [MR96]. This definition
emphasizes that there are a lot of human sociaitées involved in RE, such as

identifying the needs and negotiating for agreesent

123



Other literature suggests the importance of staklein® by proposing various
methods which are designed to reduce conflict betvigeas of different stakeholders.
They include group elicitation techniques, suchm@snstorming [D92], prototyping
when dealing with a great deal of uncertainty [SRP€ognitive techniques, such as
think aloud [SRPQ7], card sorting [S01, S04] andtertual techniques, such as
ethnographic studies [SRPO7]. The study confirmstieg knowledge that there are
relationships between stakeholders, stories andresgents-related defects.

Our analysis suggests that we need more studidsrmifying and understanding

the stakeholders on how they communicate and hewdre involved in the teams.

5.5.7 Network Analysis

The second part of the analyses is to find out timse two variables, the
Number of Indirect Stakeholders and the Numberalated Stories relate to each other.
To understand the characteristics of their relstgm we measured 10 network
attributes. As shown in Table 7, four attributeswlvery high positive correlations and
three attributes show moderately positive correteti Other attributes do not show any
correlation.

First, the ego network values all show very highr@lation values. This suggests
that one’s own knowledge about the people who amkiwg on the related stories is very
important in predicting the number of defects. feason is working on a story that
associates a lot of people, then it is likely i story is also related to many defects. It
shows the need for developers to find people whanarking on similar or related

stories in the team as early in the developmepbasible.

124



A person may be assigned to multiple team areasndidépg on their functional
specializations or their breadth of knowledge. @sult suggests that most of the defects
are discovered by people who did not belong testimae team as the person who created
the story. A moderately positive trend shows tlediedts are sometimes discovered by
people outside of the team. Finally, we measureddtal number of teams represented
per stories. Our result moderately supports thpgsal that a component with people

from many different teams do end up with more dstec

5.5.8 Predictability

The result does confirm our hypothesis. There egeirements attributes that
have strong correlations with the number of defdet®n at the requirements stage, the
number of indirect stakeholders plays a crucia inlthe defects count. Making sure that

everyone knows how changes will impact their pathe work may be important.

5.6 Threatsto Validity

In this section, we discuss the validity of ourdiimgs with respect to internal and
external validity.

For conclusion validity, we have shown that ouutelsas very high statistical
correlations. We are not arguing for multivariatatistical significance of our result.
Each attribute is measured independently from attebutes. We are only working with
one project, so there is no risk of random hetereig of subjects. It also means that the
statements are valid for the project under studywe cannot generalize our result to all

projects without further studies.

125



We assumed that the team members in the projecat thad best effort to link
the defects to the requirements and documented tikir effort. However, human error
may have led to excluding some defects becausgetredopers may not have linked the
defects to the requirements. However, we beliegettie data is sufficiently large
enough to warrant statistical analysis of our el also assume that everyone in the
team consistently used the repository to commuaiaat record their development
progress.

For construct validity, we made considerable effortliscuss the limitations of
our attributes and any assumptions we made torotitaimeasurement. We measured
multiple attributes in both point and aggregategaties. There is no participants’ bias
toward the research by the people who participatéide project, because the data
represents their normal development progress,rétha a response to a research study.
The selection of measurements was based on aditersurvey as well as on what was
available in the data set.

Depending on when a feature was developed, soraendght not be available.
Before the concept of Story work item was introadyclazz was already keeping track of
some defects. We ignored these defects from ouysasdf they did not relate back to
one of the Stories or Enhancements. However, 94thteofiefects are accounted for
through the relationship between Stories and Erdrarats. In terms of the population
selection, our data had 93 unique contributorscivig large enough to account for any
natural variation in human performance.

One of the threats to internal validity is the iptetation of the causal influence.

Based on our analysis, we can state that therstimag correlation between the Number

126



of Indirect Stakeholders and the Number of Rel&#tmxties to the number of defects, but
we cannot suggest that these attributes can catdisetsl In addition, defect prediction
using knowledge, code, or defect repository doéshow any social dynamics that may
exist in the team under study. There may be otheakfactors that are invisible from the
knowledge repository that may account for the nuibe

For the external validity, the study was perforroeda single, large development
project. Therefore, there is a risk of single grtugats, which applies when the result
looks at a single group. More empirical studiesraeded to generalize our result. The
size of the code base and the development orgamizate at a much larger scale than
many commercial products. Therefore, it may be shadller projects may not show
similar trends. We also cannot generalize our tesalsoftware using other languages or
platforms. More replication studies are neededther types of development projects.

Our data spans almost 1.5 years of development. Wbk time scale is large
enough to compensate for any unusual events thasksav the result. If there were any
special events that may have influenced the resigtunlikely to have contributed to a
significant deviation of our data.

Finally, Type | error occurs “when a statisticadtthas indicated a pattern or
relationship even if there actually is no real @@ttt [BSL99]. Type 2 error occurs “when
a statistical test has not indicated a patterelationship even if there is a real pattern”
[BSL99]. Our use of statistics was to support gatiaing. As such, an entire population
was used as discussed in the introduction seclge | and Type |l errors become a
concern if a random selection of samples were tread our population. Because we

used the entire population from our data, arrivahg@ wrong conclusion based on random

127



selection of samples does not exist in our caskysi¥e also supported our result using
data splitting.

Basili et al. stated that drawing a conclusion frame empirical study in software
engineering is very difficult, because any numidesamtext variables could have
influenced the result [BSL99]. For this reason,ceenot assume that results from this
project can be generalized beyond a similar prof@oe criticism of empirical studies is
that the result may seem obvious after the fadtils is a misguided belief as some
important facts were discovered and/or reconfirtiedugh the evidence collected.
Furthermore, we need to perform more empiricalaedeand replication studies if we
are to gain a better understanding of software ldpw@ent practices.

A correlation analysis cannot define the causalitthe relationship without
further experiments. Therefore, we invite otheeegshers to validate our results with
additional project data. Our empirical study cantdbute towards a better understanding
about collecting measurable attributes for contrgland monitoring requirements-
related defects. We also discovered that dataatetleby tools, such as Jazz, can provide
a good basis to point to potential requirementeasefand can rationalize decisions on

where to spend inspection and testing effort.

5.7 Summary

Our study suggests that the number of relatedest@md the number of indirect
stakeholders are very important in the relationgigippveen stories and defects. In
addition, we discovered that one’s own knowledge/lod works on what work items that

is immediately related to one’s own work is morgartant than one’s breadth of

128



knowledge on what the entire team is doing. Oudysguggests that we may need to look
further into how people communicate between teamipees, especially on one’s
knowledge about who is working on what. What theulesuggests is that perhaps story
tests are best at making these two attributes mark noticeable throughout the
development progress. If story testing try to mizendefects at the end by linking
stories, code and the tests, perhaps it is tryreplve the complexity of discovering
related stories and identifying indirect stakehaddes early as it can. The other attributes
did not have any correlation when linked them twists and defects. This particular
study is only meant to provide insights and ndi¢aised as a definite answer to the

overall research question that we are trying teesol

129



CHAPTER 6: A CASE STUDY OF SUCCESSFUL PRACTICE

Chapter Overview Problem: Why do people
practice Story Test
Driven Development?

Study 1: Explore T

Objective:

Investigate the
Study 2: Traceability traceability Study: Production

from stories to Accounting Software
Study 3: Successful defects _ :
Application of STDD Outcome: STDD is used

to communicate domain

knowledge; Use the
formats of the domain for
writing the story tests

Study 4: Failed
Application of STDD

6.1 Problem Statement®

We wanted to find an Agile team that believes thay absolutely cannot work
without Story Test Driven Development and also ssstully adopted and practiced
Story Test Driven Development for the project. Wéed to discover aspects about the
team and the project that are fundamentally diffeemough that simply introducing a
tool such as Jazz cannot replace Story Test Didarelopment. By observing their
project and the team, we want to find out why teeick to Story Test Driven
Development even though others did not.

This Chapter describes the case study done on pagnthat practiced Story
Test Driven Development successfully. We defineceasful adoption to mean that Story

Test Driven Development is an integral part of tlieivelopment process and the

8 This Chapter appeared in the following paper: P&rkMaurer, F., Communicating Requirements
Domain Knowledge in Executable Acceptance Test@rievelopment, Proc. $0nternational
Conference on Agile Processes and eXtreme Prognagafula, Sardinia, Italy, pp. 23-32. The copyright
release form is attached in Appendix II.

130



company practiced Story Test Driven Developmentherentire duration of their
development project. Moreover, the team embracay Sest Driven Development as an
integral part of their development process. Weyaal our observation about the team
and interpreted what aspect of Story Test Drivendlimment was the key to their
success. In doing so, we can find real benefitsraatdissues involved in practicing Story

Test Driven Development.

6.2 Resear ch Design

In this section, we describe our research meth@yadmd our research design.
Human factors are difficult to measure becausgimpossible to measure the software
engineering process independently of the pracet®nWhen we investigate a real-life
software development project, we can’t always mesgswontrol or identify all of the
factors that influence the development process [IBT. Therefore, to facilitate our
gualitative research in such settings, we deciddeverage a case study research strategy,
Our case study is done at a local company, whicilleefer in the dissertation as
company C. While we were collaborating with comp&nfpr an extended period of time
[Y03], the fieldwork for the current study was dameer two additional days during
which we conducted in depth interviews with memlzgrhe company C team. Our
results are based on newly collected data as wetisights from previous collaboration.
The new data represents over four years of devedappractice. We interviewed three
additional software developers and one project m@ntor detailed data collection. In
addition, we interacted with five additional sofre@alevelopers to corroborate our

findings. We did not record the interviews, becas®rding the interviews was seen as

131



to be too intrusive in the company environment. ldegy, any interesting remarks made
by the developers were carefully written down dgtine interviews along with any
observation we made. The length of the intervieviedagreatly depending on how much
information the developers were providing for cesearch. We also participated in one
daily scrum meeting and observed three other dailym meetings. Our empirical data
also includes direct observation of a developer whe engaged in a debugging process
of a failing story test, which lasted about oneth®ie wanted to understand how story
tests were used to fix the failing code.

Our analysis of the collected data involved opettirap and code categorization
using our field notes [GMO7]. During open coding wlentified a set of codes that could
provide most insights into the data from our fielttes. Then we categorized the codes to

determine the relationships among the identifiediesoand a list of themes was generated.

6.3 The PAS Project

A case study assumes that contextual conditiamp®rtant in the phenomenon
under study. Therefore, in this section, we aiagto briefly describe the PAS
development project. PAS is production accountofgrsare for the petroleum industry.
The purpose of oil and gas production accountirigvsoe is to keep track of oil and gas
production and calculate various capital interastested in the oil and gas wells.
Company C already had an existing production adogisoftware called Triangle, but
the system needed to be rewritten due to the ofsmbee of technologies used for its

development.

132



The PAS project was sponsored by four of the ldrgésnd gas companies in
Canada. An oil and gas production accounting systean extremely critical software
system for oil and gas exploration companies, beeauagineers and production
accountants not only have to keep track of théiamd gas productions, but they need to
be able to calculate tax and various intefdsting represented in their oil and gas wells.
Because each country and province has their owguerset of regulations on tax and
interest calculations, it is important for the aild gas companies to use software that
reflects the regulations for the political juristibt; where the well exists. The
engineering and accounting knowledge involved enghtroleum industry in order to
build PAS is so complex that it is absolutely imgibte to build the software without
having someone with the expertise who can laylweiiriformation properly to the
software developers. While all software developnmeqtiires business domain experts,
the problem with PAS is that production accountaietsd years of training before they
understand the domain. The knowledge is not eabg fucked up by developers on the
side. The team also needs someone who can ke&pfriee changing set of government
regulations in the oil and gas industry.

The number of software developers in PAS projecitflated over the last four
years of its development; therefore, the amoukhofvledge about the project
development within the team fluctuated. At the tiofi¢he fieldwork, PAS is already
deployed and operational in the client’'s work eonment. Our contacts in the company

told us that there are about 80 software developesters and clerks at the time of the

° Interest: how costs and revenues are shared kstsilers

133



fieldwork. For an Agile development team, it istgua large team. The team is split up
into several subteams (one for each major comp@nent

The development area is a large open space. Eatdasu had, what they called,
a SPOC (Single point of contact) and an SME (subyedter expert). A SPOC
communicates the progress of the team and addrasge®ncerns that other teams
might have on the component they are building. $KEE is the person who has the
domain expertise to define the requirements, anawgidomain-related questions from
the developers and test the end products to etisatréhe requirements were correctly
understood and implemented by the developers.

Each subteam had 2 to 8 developers and they stayeasn only for the duration
of building the specific business component. Eaeimt holds a daily scrum meeting in
the morning. Due to the size of the team, each teahhseparate scrum meetings and
each team sent a team representative to interda#lynscrum meetings. In addition, they
kept track of bug lists using Jira [Ji1l]. There@B827 ‘GUI Smoketests’ that test the
user interface layer, 93 report regression tesdishamerous unit tests and other types of

tests that we did not look into carefully for tihesearch.

6.4 Observation
In this section, we present our observations bygrilEag the company C’s story
test-driven development process. We first desailreobservation and then we

summarize the implications of our findings.

134



6.3.1 Choose the Requirements Specification Tool the Customer’s Domain

The requirements specification is defined usingdinguage and formats of the
business domairmhis can reduce the extra overhead of learningpleeification tool by
the domain experts (customer representatives)c@ae study shows that the domain
experts chose Microsoft Excel as their requiremspégification tool, which is a
standard tool for communicating production accautiata in the oil and gas industry.
The standards for the data formatting are regullyetthe provincial energy regulatory
boards [ER11] and production accountants geneuakyMicrosoft Excel to facilitate
their business communication. Although productiocoaintants are not required to use
Microsoft Excel, it is a common practice to do sdhe oil and gas industry.

Microsoft Excel became a preferred tool for requieats specification, because
Excel was familiar to the domain experts. Excelfeasures such as Visual Basic macro
programming and pivot tables. The domain expertiersiood and used these Microsoft
Excel features proficiently. A story test file HE& macros, which are used to create these
table templates and help with the test automatrongss.

One Excel file contained many requirements andléhwelopers considered one
Excel file as one story test. Each story test mmosed of many calculation worksheets,
which are represented using Excel worksheets. macksheet can contain 20 to 650
rows of test data and about 3 to 30 columns. Eastcan return more than one expected
output result.

There are a total of 17 business components iR&& project. Each business
component had multiple story tests and each sestg had multiple worksheets (or the

developers called them ‘views’). There are a tofd@21 story tests for the PAS project.

135



The domain experts were able to write and mairtteese tests whenever a feature is
added or changed in the software.

The use of Excel was motivated by the ease offeamsg and codifying the
domain knowledge via this medium by the domain espespecially because Excel is
the conventional tool in the business domain. éasier to codify tacit knowledge to
explicit knowledge if the tool is already utilizéal facilitate communication in the
customer’s domain. In addition, (1) domain expert® are familiar with the
specification tool are more likely to create andntan story tests for the developers and
(2) the tool can communicate the domain knowledegt because it can represent the
domain data appropriately. What makes MicrosofteExtteresting is that this tool is
universally well known and easy to learn by both thistomers and developers. Finding
a common tool that can be used and understood $ipdrs experts as well as the
development team is a crucial and important coowlitor a successful STDD process.
Excel not only allowed the production accountaatketverage their existing computer
skills for writing the requirements, but it alsmpided the contents in a form that

developers can easily turn into story tests.

6.3.2 Communicating the Business Domain Knowledge

In this section, we are going to analyze the kihknmwledge their story tests are
conveying to the developers. Table 8 shows onlgrg small snapshot of a large story
test that has 644 rows and 14 columns, which ypiadl example set of scenarios
required to test for real-life production accougtiifable 8 is testing for a contract

allocation. The last three columns show the suth@®xpected share of the energy for

136



everyone who has a stake in the reserves profittoied that most of the tests are
transaction style calculations. Generally the tektatify where (a physical entityuch as
reserves or a facility)vhothe transaction is fowhatvalues should be assigned and
optionallywhenthe transaction occurs. The format is typical of production

accounting spreadsheets. The test data is cregpti llomain experts using similar
production data, but the data is so realistic ithatuld be the real production accounting
data.

In the following paragraph, we will explain howdhable is used as story tests.
These spreadsheets are test values. Thereforgprtadsheet may serve many stories
and it may contain many features that will be deped in software. Therefore, there is
no one-to-one relationship between stories andetramples. Like Fit tables, the
spreadsheet shows the input values and outputs/ditedso contains formulas on how
these numbers are derived.

Therefore, for example, if the developer needsriteva function that produces
“Sum of PRICE”, he would refer to this spreadshe&mple, analyze how the inputs are
translated into the final output value. The developould then write the automated story
tests that extracts input and output values oth@tpreadsheet automatically. Much like
Test Driven Development, he needs to setup thdixdstes before he writes the code.
After he writes the actual code, he would testthide against the story test that he wrote
before. The customers are told how to to execusetistory tests. Because the values are
automatically extracted from the spreadsheet, tisomers can now change the values in
the spreadsheet to test whether the code writtehéogeveloper produces the right

results even with different numbers.

137



100040500

722W500

Table8: An Example Snapshot of Story Test Definition

royalty

C5

Party

Name

Farmer

Cassie

Prod

Code

Cont Ty

Royalty

pe

ent

VOL

Settlem | Sum of

Sum of VAL

ash

.76

339.98

938.37

TIK on | Kathy and | AS Royalty IK 2 235.69 518.51
gas — Co. IK 2 235.69 518.51
100%
E Microsoft Excel - 2FlowFU_Cascade_ICNCC6Import.xls
E] Fle Edit Vew Insert Fomat Tools Data Window Help
DEHRS GRIVHR XA @
izl -0 - B I U|IS==5H]8 % cgr @ searny. el 74 wg
J3s - ~
A [ B | ¢ [ D [ EJ] F 6 [ H [ 1 T K T M [ N [ o [ P ]
% Water Fju'e
|3 Gas
4] 35““3“'“ GS | specs, Sulphur
5 (Eeeeia) NGL Mix
16|
al
e
9
71 BT Prime: AB BT 0787878 Vent GS Prime: AB GS 0898989 Gas sales
111 [T R Rfuel (Directed)
7;.—' ' g
|13 BrsuB1 Farm tap sal [ Fuel ! Fus
[14] + | slessusn N ad
[15] _» Fuel (2 P \ v 585 FU NON-OP
|15 | — = Gas Sales 2]
= a7 sUB 2 cosp GSSUBE | —p1saatonop | O C2-5p
L] s ascade)
18] Gas NGL-Mix
s \\ i
[20] GS SUB2 l C5 Lift
1 Gas Sales
| 22| ‘ * C5-Sales 1986 Cascads | Sulphur
23| l C5 prod Gas sales Nonop GP | C3-SP
4| | Rfuel 1 3
El Gas sales 1960 ngpt | "
3
|27 Satelite X (
r
[29] il
|30 |satelie BT Gas 1838 GGS C6-Transfer receipts 1950 NGP1
1
:Z GP Prime: AB GP 0656565
3
,i é.
Eom R —
6| | ! H
|37] | | : ‘ Gas_C5-Sp
|38 | GP Sub 1 C2.Sul,.|GP Sub 2 N Gas Sales
EI | Mix Fuel Sale
|40 | Gas T NGL mix sales
1]
l42| NGL Mix sales
143
|44
|45 1
%6 |
|46 P
CEE 5 se 3 Schematic Fadlity Monthly Data oint. Sales Contracts. Contract Monthly Revenue Cost Centre DOI Facllity Profiles Royalty Contracts Wel Data £ Fadiity 4
P v N wrmMmEEdos@E . e A== @ @

Figure5: A diagram explaining the business processinvolved in a battery facility

The domain experts also provided workflow diagréinas are not executable, but
they complement the executable specification. These designed to inform the

developers about the business workflow for theystest. Figure 5 shows a workflow

138



diagram of a battery facility. Our analysis shows that the domain experts need t
provide two types of documents: testable requirgsmgpecifications and an overview
document to put the specification into context. dkierview document can be used by

the developers to point at something to ask forenm@iormation about the domain.

M aking the Requirements Specification Executable

The testing framework is based on Excel, Ruby ahdtJRuby is used to
automate the user interface layer testing. JUnisexd to execute the script file and to
compare the test output values. Executing one $éstycan take up to 1 hour or more,
because it simulates real-life production data@aldulations and it runs against the Ul
layer. A production data file contains months oereyears of production data. The

largest Excel file is about 32 megabytes in size.

Scenario Stats
Successful Percentage Rate

100.00%

O/TD o A a ) M A

oo | L/ V! o S T

70.00% L\/ U ‘r,'| "\‘ ”

60.00% - U v

50.00%

e I

30.00%

20.00%

10.00%

o T T L f L Rk kAR RER R R @ ‘
REEEREERROBEREEREEREREREREREE
$O083§88358825288383823853385¢g8¢
® O R R d B EHQ aaﬁﬁhh a ™ 3 n n o

Figure6: A time-series graph showing the per centage of story tests succeeding at the
end of each sprint. 0% successrate was dueto atest automation problem at thetime
rather than any serious software malfunction.

10 Battery facility: a plant where raw petroleum éparated into different types of hydrocarbons

139



Figure 6 shows a time-series analysis graph ofgogages of succeeding story tests
captured at the end of each sprint. Notice that tree, the developers became much
more conscience about passing the story testsvBgtinnot make a definite conclusion
about the quality of the software from the graph.

We wanted to get a better understanding whethegridgeh reflected the amount
of domain knowledge that was transferred to thesbigers. To do so, we asked
developers to explain what happened in the devetopstage by looking at some of
these points in the graphs. We asked the developessplain specific parts of the story
test that were failing. They explained it in teraigow they can fix the problem
technically, but they could not explain the domiamwledge behind these tests by
putting it into context of the industry. Howevedrey knew enough to explain why the
test would fail for the specific story test thagyhworked on. Based on our interview data,
we can assume that the team’s understanding diuieess domain is fragmented across
many developers. It also meant the story testsigeea@nough information for the
developers to implement the code even if they tiaviéed understanding about the
domain in which it will be used. The regressioridesing story tests were important
because they highlighted this knowledge gap ambagiévelopers. Different teams were
responsible for developing different parts of therkflow process. Therefore, these story
tests made the knowledge gap transparent to everp@cause it allows them to measure
what story tests they understood and passed. Mgrertantly, it allowed them to
identify who they should talk to for specific stdgsts (requirements and domain

knowledge). Therefore, they knew who and when &k git help when these tests failed.

140



Unlike unit tests, failure in story tests meantth@sunderstood domain knowledge, thus
it signalled possible problems in delivering busmegalue to the customer.

They did not need in-depth production accountiagitng to fix the software
problem, because executable acceptance testsyugaaé enough information to
identify the problematic code and also provideddkeected answer. However, a more
in-depth empirical study is required to understdreddeveloper’s cognitive processes

involved in going from failing executable acceptamests to fixing the code.

6.5 Discussion

We discovered that the purpose of having story tissbcommunicatehe
domain knowledge to the software developers treapartinent in understanding the
software requirements. The story tests were a fegddystem for the developers to
confirm their understanding about the requiremantsthe business domain. Previous
research also validates our finding [MO7, MMCO6od than any other types of
development artifacts, story tests are utilizefilkthe knowledge gap between the
domain experts and the software developers. Thaddests from the automated
regression tests are a good starting point forldpees to question their understanding
about the domain. Without such feedback systemdéivelopers would not know how to
validate their understanding about the requiremetasvever, no one previously looked
at how specific types of domain knowledge are @mitih executable acceptance tests.

Themediumused for acceptance test specification is impoftaran successful
STDD process. Previous papers found that toolggvertant [MMCO06]. However, we

discovered that tools are important for the donexiperts more than the developers. The

141



team discovered that production accounting knowdadgyery well organized using
Microsoft Excel. We hypothesize that Microsoft Eixegde the test specification easier
for the domain experts. By giving more power todioenain experts, the developers were
able to gain valuable acceptance tests that becatival artifacts for their success. We
believe that directly utilizing the language andhfalism of the business domain (instead
of development oriented languages and formalisnis)nprove communication

between the business side and the developmentfalsoftware project.

We also discovered that thentextis also important. First, we discovered that the
acceptance tests not only provided testable exadgtée but we also need to provide
overview documentation about the domain knowledgelasiness workflow diagrams.
The extra information helped communicate the nesgssomain knowledge needed to

understand the acceptance test specifications.

6.6 Threatsto Validity

For external validity, we believe our case study lba generalized to very large
software development projects where the softwaveldpers do not have complete
understanding of the domain knowledge. Howevercase study only supports
transactional style domain data. For threats &rinal validity, the observation was
collected and analyzed by the author of the thegig;h may have introduced some
unintended bias. Our interview data also mostlieottthe perspectives of the developers.
To ensure construct validity, we performed a dethihspection of the tool and the
requirements. We are confident about our findilhgsause our observation and test data

represents over four years of development practice.

142



6.7 Summary

Our study shows that the main reason for the sscoeStory Test Driven
Development is to communicate domain knowledgeithgértinent in understanding the
software requirements. Knowledge held by the doraaperts was not something that
developers can easily learn through simple questonl answers with customers. It is
also not something that can easily be communioaittdsimple stories. The story tests
were part of a learning tool for the developerse $tory tests were important in making
sure that the software developers understood #fieotlifferent scenarios that exist, so
they can implement domain knowledge into softwarecfionalities. The automation of
the story tests against the code was to make katr@t other developers broke the
existing functionalities and end up returning difiet results. Not all of the developers
need to become experts in production accountiryilol software for production
accounting. However, all of the developers mustienghat the story tests were passing
after their implementation was added. Even if theyhot know all of domain knowledge
in other aspects of the software, passing theeegtary tests meant that they know their
code did not mistakenly negatively impact any otbets of the code. The story tests
were an important backbone of communicating theecbidomain knowledge to the
developers without too much training cost. Therefave believe the key aspect that
Story Test Driven Development actually serves iilédgontext is communicating the
domain knowledge to the developers.

In addition, what worked so well for this team wvitaat the domain experts used

the tools that they were familiar with — Microsé&ftcel. The customers did not have to

143



learn a new tool or worry about the test automatidine developers were the ones who
figured out how to extract data from the examplhed were provided by the domain
experts and automated them for their developmesdsel herefore, there is no
additional overhead for the customers to parti@gpathe Story Test Driven
Development. Based on this research, we proposa@gadriven story testing — using
the examples of the domain for story testing fer plarpose of teaching, communicating
and learning about the domain specific knowledgehé next Chapter, we explore the

obstacles in eliciting examples from the customers.

144



CHAPTER 7: WHAT ISTHE BIGGEST OBSTACLE? A CASE STUDY

Chapter Overview Problem: Why do people
practice Story Test
Driven Development?

Study 1: Explore
Study 2: Traceability Objective: Study: Economic
Investigate the Reserve Analysis
factors that Software Development
Study 3: Successful lead v S P
Application of STDD adoption failure
of Story Test
Study 4: Failed Driven Outcome: STDD requires
Application of STDD Development a community of story test
contributors and personal
motivations

7.1 Introduction

In Chapter 6, we discovered that Story Test DriRenelopment is particularly
useful for communicating domain knowledge betweagsta@mers (domain experts) and
the developers. The automated testing aspect aftting tests allows developers to
implicitly learn and directly test their knowledgbout their understanding of the domain
knowledge and find out how it is implemented intaafe. Story tests were not a quality
assurance tool, but a validation tool about how @ioarRknowledge should be
implemented in software. Especially in a largewafe team such as the team in Chapter
6, the automated story tests are a vital part diating everyone’s implementation.

We also discovered that using the tools and formwiatise domain is important in
their success. Knowledge transfer is somethingrtbaither Agile techniques can replace
and it is a purpose that only example-driven stesying can fulfill. Story Tests are used

particularly for the purpose of transferring andncounicating domain knowledge to the

145



team members. As mentioned in Chapter 6, we dalluhe of Story Test Driven
Development Example Driven Story Testing'However, could a team also encounter a
problem with example driven story testing? If styaivcould it be?

In the following, we present a case study of a tdahalso used Example-driven
Story Test Driven Development in a very similar veasythe team in Chapter 6, but
STDD did not work out for the team. The team irst@hapter is also building software
that is similar to the team in Chapter 6, but #ent is much smaller. The organizational
arrangement is different than the team in Chapt@hé team also brings interesting
insights into the way Example-based Story Test @ridevelopment works, because it
allows the researcher to see the problems betardhly examining successful cases. As
mentioned in Chapter 6, we cannot make any defaatelusion based on one case study,
but a single case study can provide very rich imsignto the problem under study. As
mentioned in Chapter 3, qualitative research isasheays about finding the definite laws
of the universe, but to provide insights into tiepomenon under study. The case study
in Chapter 7 is presented for a comparison purposeder to gather more rich evidence

about Example-driven story testing.

7.2 Background

This section describes the background of the teadritee project that we used for
our case study. The purpose of this section isduige the context in which the case
study is done. A case study assumes that contexaudition is important in the
phenomenon under study. Therefore, in this secti@nare going to briefly describe their

software development project.

146



This case study is done at a small local softwarepany that is building
software for oil and gas industry. The case studg done in March 2008. Unlike the
team in Chapter 6, the company and the employeestaatay anonymous for our
research, especially considering this is a failsehapt. Software they were building was
petroleum reserves economic risk analysis softwireir practice of Story Test Driven
Development came to an abrupt end due to persshiftd and unforeseen
reorganization of the company. We will explain hat in the chapter, but their main
reason for the failure is the lack of ownership #rellack of community of story tests
contributors. However, they were able to practitysTest Driven Development for
roughly about 6 months (although the project lastemior three years) and this case
study covers their practice during that short tpreod.

At the end, we interviewed the team to gather tregiospectives on the project.
We recorded the interviews and any interesting rksnanade by the developers were
carefully written down during the interviews alowgh any observation we made. Each
interview lasted about 2 hours. Our analysis ofdbléected data involved open coding
and code categorization using our field notes [E9Buring open coding, we identified
a set of codes that could provide most insights thé data from our field notes. Then we
categorized the codes to determine the relatiossdmmpong the identified codes and a list
of themes was generated.

Their software is economic risk analysis softwamegetroleum reserves. The

purpose of economic risk analysis software is &lya@e whether development of chosen

™ The two transcripts that were recorded and trémsdrare available in the Appendix IIl in verbation
the examination purposes only as well as their olteaccordance with the conditions of the ethics
approval, the transcripts are not included in thalfversion of the dissertation to protect thevacly of the
people we interviewed.

147



reserve is economical enough to purchase, drédkénact oil and gas from either proven
or unproven reserves. Unlike the team in Chaptéressoftware they were building is
interested in future viability of a well rather thaccounting what is already produced.
Their software allows the engineers to predict lpoefitable the reserves will become
given production rates and capital interests toerhk reserve active. Software may also
be used for the purpose of predicting profitabkerees for the exploration purposes as
well. Much like the case study in Chapter 6, tlimpany also has an existing product
that is already being licensed to their clientswideer, the team was trying to add
additional experimental functionalities to enhatiee prediction capability of their
software.

The team that practiced Story Test Driven Develapgmes a five-member sub-
team within the organization with about 30+ memlgalhough the original team was
three people). The company was not practicing Agithodologies and the management
did not believe in its usefulness. However, thidipalar sub-team was practicing Agile
methodologies within their team and was tryinggoead its usage to the rest of the
company. Therefore, the main difference betweengam in Chapter 6 and Chapter 7 is
that the team in Chapter 7 is also battling theal/&gile adoption as well.

The developers did not know abdtbry Test Driven Developmgpt any of the
many other names it is called), because they didkmmw about its existence. They felt
that this was uniquely their invention. Howevegithnventionwas remarkably similar to
how the team in Chapter 6 was practicing, whiclhy this particular team made an
interesting case study. We did not tell them ablo@texistence of story testing in order to

not interfere with their view of how the team shibplactice their version of story testing.

148



An economic prediction software is an extremelyical software system for oil
and gas exploration companies, because engineeoslyaneed to keep track of their
past production rate, but also use them in conjanatith financial data, government tax
rates and other various capital inter&stisat are reflected on the particular reserves. In
addition, because each country and province hasawea unique set of regulations on
tax and interest calculations, it is importanttfog oil and gas companies to use software
that reflects the regulations for the politicaliggliction where the well exists. The
amount of engineering and financial knowledge imedlin the petroleum industry in
order to build economic risk analysis softwareasemplex that it is absolutely
impossible to build such software without havingheone with the expertise who can lay
out the information properly to the software depels. While all software development
requires business domain experts, the problemegtmomic reserves is that developers
would need years of training before they understaedlomain. Like the project in
Chapter 6, the knowledge is not easy to be piclelyudevelopers on the side. The team
also needs someone who can keep track of the citaegt of government regulations,
the latest news on oil and gas pfdyand production rates of nearby reserves.

The team under study is made up of four developetisone project manager.
This particular organization put their employeés iteams based on their job
functionalities. For example, developers all belemthe developer team and the project
managers belong to the project manager team. Tdesdopers and project managers are
assigned to the project only for the duration phdicular assignment and then they are

broken up again. Therefore, the five member teaomlig going to work together for the

12 Interest: how costs and revenues are shared kgtsitlers
13 Buying and selling of reserves

149



duration of their project. The project manager reagn have to manage multiple projects
at a time if they were lacking project managers eveh share the responsibilities with
someone else. It is also possible that the projectager may be reassigned to another
project in the middle of the project. Based onittierviews, it did not seem like the
project managers had much say in what projectweeyt to work on. The developers,
however, usually stayed with their project untikifinished or abandoned. One
developer mentioned how he was happy to be assignedrk with a particular person,
but regretted that he could not work with the peragain in the next assignment. It also
meant there is a testing team where the projesttgamtsferred to after the development is
done.

The domain knowledge would have to come from therass analyst team
(sometimes also called Project champions but dpeetoand project managers used
different terminologies for them) or the projectmager team depending on who had the
expert knowledge. It is often just a guess as to may have the domain knowledge, but
usually the developers knew who would have the dok@owledge (or even have
preferences on who was better). But generallytehe can only get one business analyst.
Not every business analysts and project managews hired with the domain knowledge.
Therefore, one developer mentioned if they wereggasd a project manager without the
domain knowledge, it was really painful to work étiger. In addition, they had to find
the domain experts outside of the project team.déwelopers mentioned that asking
someone for their knowledge was not always an esgyest, because these people may
be juggling multiple projects. If the project istrassigned to an analysts’ list of projects

to manage and analyze, the requests do not alveysgdled efficiently. Project

150



managers sometimes fulfilled the role of analystsg,analysts did not manage projects.
In addition, if the person is managing multiplejpots, projects that are not high on their
priority list may fall short of help. In situatiomghere the right kind of domain experts is
not assigned to their projects, they mentioneddkking the knowledge from the fellow
developers may be easier. Some developers alreabigidtades of experience in making
this type of software and these developers knewgmto be domain experts in some
areas. Sometimes asking fellow developers mightjedhe faster way to get the

necessary domain knowledge.

7.3 Observation
In this section, we present our observations byrmil@ag the pitfalls of how the
team practiced story test-driven development padék first describe our observation

and then we summarize the implications of our figdi

7.3.1 Ownership of the Story Tests

As mentioned in Chapter 6, the standard tool fonmainicating production
knowledge is Microsoft Excel. It is also reflectedhis company and the team used
Microsoft Excel spreadsheets for writing their gttasts. The developers created
Microsoft Excel spreadsheets with the necessamutas. One developer was
particularly proud of his work on how he managedutomate the nightly regression
tests based on this Microsoft Excel spreadsheet.

He said:

151



Excel is a cell-based calculator. So it's extrenfdyible. It doesn’'t have any
structure. The calculations that we want are, asibally time based
calculations, and, not only time-based variablmdibased variable calculations.
So you want to be able to have variables and retetnips between variables, but
not cells. And Excel, you know, you have to refigatulas. You have poor data

handling.

Therefore, the developer created a template inlwthie numbers would be
generated randomly by Microsoft Excel and were fegulthe automated tests. The
developers asked the business analyst to fillensffreadsheet with some examples and
formulas. For example, one of the developers $aidat we found through this was it
was a really good way to get business people toesspequirements in a concrete way
and that was a big challenge.” However, despitaifagie of the domain tools and the
automation tests based on the Excel spreadsheetgpally only the developer who
invented the tool ended up using it.

The problem was the ownership. The benefit of uiiegdomain tool is to allow
the customers (the business analysts or the pnoj@ctgers in this case) to explicitly
write out their knowledge in a form and with theltthat they were familiar with.
However, in this case, the spreadsheet had speavfis and columns where a specific
type of information must go into. The template wesated by the developer, not by the
domain experts. Although not spoken, the impresgiergot was that the ownership of
the spreadsheet was that of one particularly petkerdeveloper who invented it, and

neither the team nor the domain experts.

152



In addition, there was a lack of freedom in how muowre information the
domain experts can provide based on the rigid taeteplprovided by the developer. If the
domain experts provided more information, thendéeelopers had to automate them,
which would add more time to already busy schediiesvever, the developer
mentioned how it would not be too hard to accomnmddding additional lines in the
automation code to handle extra rows and columne.@ the participants said, “it
turned out that, ah, the business person was angutige Excel spreadsheets and
constantly saying that they were done. You knovihwia day or two days, changing
them again and trying to sneek it in and. Ah, thimmated tests will catch the stuffs
were failing because things have been changecigpteadsheet.” In addition, if they
added additional lines into the story tests and¢igeession tests failed, the domain
experts would have cranky developers the nextldayther words, the story tests
belonged to the developers. The domain expertadatithave the ownership of these
artefacts. They were perceived to be merely guedrioutors.

However, eventually the ownership problem propatyateen to the developers.
The main problem was the other developers did ealtyr know how data was laid out on
the story tests and were just afraid that they ddwbak something. In addition, there
was no real advantage for the developers to sgendtime to work on these story tests
when they had a pretty good set of automated bestsd on unit tests. The developers
did not really feel the need to write out their Wwiedge in both unit tests and story tests.
If the business analysts were not going to upduaset story tests, then they also did not

see the point of updating these story tests themsel

153



Therefore, it is not only important to use the soahd format of the domain, but
also that the customers (domain experts) must besetstory tests. However, in order
for the domain experts to have the ownership oktbey tests, the story tests need to be
flexible enough for them to write, change and na&mthem comfortably using their

knowledge and background.

7.3.2 Community of Contributors

Writing and maintaining the story tests take tiffilee project manager said that
he simply did not have the time to write the stimsts. He was juggling many projects.
He was reassigned to another project before thettia project and another project
manager was substituted into the project. The ptesvproject manager said that he liked
the idea of story tests, but he said that he dichage the time to help the developers to
write them. The project manager did not foreseediesto be a permanent part of the
project. Therefore, he wanted the developers teelfesufficient. Leaving behind story
tests would mean that he would needed to be cauasten after he left the project.

A developer said that the idea of story testing itsademise after the first project
manager was reassigned to another project. He"saw, after the project got going a
while, we switched business analyst to somebodywele wasn't quite as detail oriented
and not as good at expressing requirements andsnmu to the level of details that you
could nail it down and actually program somethimglo it.” With the new analyst, it was
hard to pick up the momentum again. The develogieeda business analyst, but she
was usually too busy to get an answer. What thgegréacked was the person who could

fill the domain expert position.

154



In addition, the business analysts and project gensavere not evaluated based
on writing and maintaining the story tests. Thejggbmanager said that the developer
who built the story testing tool was working ingtmdustry for decades along with
another developer. He believed that the develdpaishe knowledge to write software
themselves. He hoped that they would write and tamirihe story tests and just ask him
for more information when they needed a littledsindditional information. Because
story testing was entirely the developers’ initiatand their invention, the domain
experts still saw story testing as developers’sashkt the customers’ tasks. Story testing
was not seen as something they would get persomeailgrded. In our view, what lacked
in this company was a community of contributors wha maintain these story tests
regardless of the team and the projects. It wasedeas a task that was assigned to a
specific person and people did not want extra ewpsrtal task on their to-do list,

especially when the company was not fully onbobhedidea of story testing.

7.4 Discussion

In Chapter 6, we described that the purpose ofrfgastiory is tacommunicateéhe
domain knowledge to the software developers famsot functionalities. The story tests
were a feedback system for the developers to gortfieir understanding about the
requirements and the business domain. Howeverjsgewkred that practicing
successful story testing requires additional factbat we did not readily see from the
study in Chapter 6 alone. Simply using the toolthefdomain does not guarantee
success. The study in Chapter 7 shows that owrnpeastti community matters in its

overall success as well.

155



The tools and formats both need to be organizetidylomain experts, because it
gives the customers the feeling of ownership of¢hsory tests. Asking the domain
experts to simply fill out existing templates orrfes does not foster the sense of
ownership by the domain experts. Perhaps the foofrthie story tests need to be
discussed by both the developers and the domairtesxo figure out what formats and
tools may help both parties.

In addition, we discovered that there needs to @@namunity of contributors for
the story tests. In an organization where you ddnow how long you will end up
working on the project, the project managers arginass analysts were not easily
accepting new responsibilities that may tie therth&oproject. Unless the entire
organization was practicing Story Test Driven Depehent, like we have seen in the
team in Chapter 6, the domain experts were noyreagpend time implementing story
tests for a single project that they did not eveavk how long they will eventually work
on. The team also felt that the practice will rastlonce they move onto the next project.
In the end, Story Test Driven Development is aficadhat requires a community of
contributors. It is not just a one person assigrimen

In addition, an alternative answer to why the téaihed to practice Story Test
Driven Development is the lack of a process in gisitory tests. We suspect that the
process did not emerge like the other teams, bedaescustomers were not motivated to

engage in the process and the lack of communitycdraprovide the story tests.

156



7.5 Threatsto Validity

For external validity, we believe our case study lba generalized to software
development projects where the software develaperst have complete understanding
of the domain knowledge. However, our case stu@ynagnly supports transactional
style domain data. For threats to internal validitye observation was collected and
analyzed mainly by me, which may have introducedesanintended bias. Our interview
data also mostly reflect the perspectives of theelbpers. To ensure construct validity,
we performed a detailed inspection of the tool #nedrequirements. The case study

provides an additional case study for the compansopose in addition to Chapter 6.

7.6 Summary

In this study, we have presented another casg sbudhe comparison purpose.
This case study is a failed attempt at Story Testdd Development despite using the
tools of the domain for communicating domain knalge to the developers. It shows
that adoption of Story Test Driven Development rexgicustomer ownership and a

community of contributors.

157



CHAPTER 8. SYNTHESISOF FINDINGS

The main goal for my research is to investigate whgple use Story Test Driven
Development in Agile software development. We ergaicthree research questions in the
dissertation. 1) What problems are faced by Agenis in practicing Story Test Driven
Development? 2) Investigate the relationship betwateries, teams and defects. 3) What
are the factors that lead to successful adopti@®tafy Test Driven Development? In
Chapter 4 and 5, we discovered that the technicabtamming/coding/testing) aspect of
the software development is not the main usagearl S est Driven Development.
Chapter 6 and 7 presented two industry case stoflieswv Agile teams implemented
Story Test Driven Development for communicating damknowledge. In addition, we
discovered that customers require not only a coniyiofhcontributors.

Throughout all of our empirical evaluations, we @dded how and why Agile
teams adopt Story Test Driven Development and wioaks in real life settings. We
synthesize the findings and make generalizationfhemnises of Story Test Driven
Development. We synthesize the findings based eretipirical evidence from the

studies and corroborate our findings with existiteyatures.

8.1 Main Themes
We identified the following four main themes emaxgfrom our empirical
evidence.
» Examplesof the Domain: Our observation suggests that story tests should be
the examples from the domain. It encourages theadoexperts to provide

examples in the format that is comfortable to them.

158



» Story Testsas Knowledge Repository: We observed that the developers use
the story tests to learn and test their domain kedge by testing their code
against the story tests.

* Rewardsand Moativations. The customers require a personal reward in order
to be motivated to provide these domain examples.

» Community of Contributors: Story tests should not be generated by one
person. We discovered that it is easier to buidkimowledge repository of
story tests if there is a community of contributdtrspreads the burden of

maintaining the story tests to the team rather thame person.

In the following sections, we will summarize eadht® main themes more thoroughly
with supporting evidence from our studies. We alswoborate our findings with studies

done by other researchers in the similar reseasdsa

8.2 Examples of the Domain

Story Test Driven Development is a communicateghhique rather than a
software testing technique. In this section, we digcuss the potential adoption
problems that a new technique, such as Story Tege®Development, may need to
overcome in order for Agile teams to adopt it ititeir development process effectively.

Why are some software engineering techniques adopbre readily than others?
Story Test Driven Development is an innovation witthe tools and techniques that
make up Agile software engineering. According t® literature on Diffusion of

Innovation (DOI), an adoption process is not anviddial or an organizational decision,

159



but it needs to be analyzed from the communityrsjpective [FK93]. The benefits of the
adoption must be evaluated in terms of the commubécause the adoption usually
depends on the size of the current and future adopnd it will have a strong impact on
the inherent economic value of the innovation [FK®Bidely accepted technologies will
have faster innovation, more experts and betteptemmentary and compatible tools.
From these perspectives, Story Test Driven Devedsgmmust solve problems that other
techniques either cannot solve or are too costyotee. It should not try to solve
software engineering problems that other technigaesalready solve at a significantly
lower adoption overhead and cost. What Chapteisbdgesting is that there are other
techniques and tools that are much more readilyjedla than Story Test Driven
Development that can solve specific software desagrd testing problems that were
discussed in the mailing list from Chapter 4.

In Chapter 6 and 7, we observed that Story TesteDrDevelopment is used as a
communication tool. The domain knowledge that thfénsare developers need to learn is
very complex. The story tests were used as a waglidate one’s knowledge about their
software implementation. Story tests are also ateaafeguard other people’s code
against unintended code changes from the new bedause developers only knew
enough domain knowledge to build their own funddilitres. Without the story tests,
most people in the large software team would notkkhow their code changed other
people’s code and their functionalities.

Similar findings are observed in the previous stsdHHO08, M08, OP09, HKO06,
SP04, ARS07, GBGP0O7, KNRQ9, CD07, PMO08]. They st#tat there is better

communication with the stakeholders. [GHHWO05, TKHiD8tated that they had better

160



understanding of what has been developed. [HHO8VQH St09, K06, HK06, R04,
ARSO07, MLSMO04, ABL09] stated that they had bettenficdence about the progress and
deliverables. However, our study adds to the exgdbody of knowledge that story
testing is a process for communicating knowledgieerathan a process to inform
stakeholders about the development progress. Isale the crucial bottleneck in
communicating knowledge to the developers who ddage previous training in the
domain.

We also observed that using the format of the diomvarked well for the team in
Chapter 6. A communication tool should embody ashaf the essential information
and business context as possible. There are tvwgomedor the use of the formats of the
domain. The first reason is the motivation. Oueegsh shows that the best way for
domain experts to participate in Story Test Drild®velopment is if the domain experts
use formats and tools of the domain. The storgt&gsbuld be examples, possibly even
examples right out of the domain as they are uBled.domain experts and the end-users
are familiar with these notations and the toolasttihere is less overhead in terms of
providing the example for the purpose of storyitgstRemoving the barriers such as
training cost for tools is important in order tacenrage faster adoption.

Another reason is the communication of the busicesasext. The story tests
using examples of the domain provides better caritexhe developers to understand
and learn about the domain. It should not be wrigted produced using software testing
tools, because it not only loses the business xbatehe domain, but it is also harder for

domain experts to help the developers if they havese the tools and formats that are

161



not familiar to them. This finding is a new additito the academic body of knowledge
for Agile software engineering.

From the economical standpoint of the adoptioruditin, story testing needs to
be looked at from both the developers’ perspeas/evell as the customers’ perspective.
It is important to find the tools and techniqueatttan satisfy both of these groups with
the least amount of initial training and cost. Tise of software testing tools has a high
training overhead for non-developers. On the oflzerd, we discovered that automating
story tests is usually not too difficult for thevédopers once data becomes available. The
bottleneck in the adoption process is the willirgmef the customers to provide these
story tests. We discovered that using the exanfpes the domain is a good way to
alleviate this particular adoption problem.

The domain experts usually have their own standairtisols and formats that
guide their discipline. These formats and toolsehawg traditions within the domain
expert’s field and sometimes there are very goadaes for their choice of formats and
tools. Staying with the domain’s standard toold Botmats may encourage many
domain experts to contribute, which also may hiepdevelopers in recruiting several

domain experts to work together rather than hajisggone domain expert.

8.3 Story Tests as Knowledge Repository
The story tests can serve as the knowledge reppsitahe domain. Much the
same way stories and a storyboard behave as iniomradiator for Agile teams [B99],

the story tests are information radiator for domaiowledge. The examples used for

162



story tests bring contextual information into thgcdssion, which would help the
developers understand better what the end-users wan

Cockburn states that a good information radiatoughhave the following
attributes [CO4]:

» Easily visible to the casual and interested obgsrve

* Understandable at a glance

» Changes periodically

* Kept up to date

Many Agile studies emphasize the importance ofrtff@mation radiator in the
overall success of the project [RP08, EW06, Sh@B, BRSF06]. Sharp et al. state that
much of the knowledge in Agile teams are tacit,egtdor the two tangible artefacts:
story cards and the wall where the story cardsiang [SRSF06]. They discovered that
the key mechanism for moving information is facdéoe interactions. The stories were
artefacts for mediating, creating scaffolding, geetting and coordinating resources. The
information transformation occurred when theseissowere turned into executable code.
However, most of the transformation occurred implidbetween people, cards and the
wall. In order for story tests to act as informatradiators within this model for Agile
communication, story tests also need to be the at@dand help with goal settings and
coordinating resources.

Chapter 6 suggests that story tests do work inucmtijon with stories and they
also act as a type of information radiator. Theystests can provide additional
information on top of the stories by providing infaation that is hard to convey with

conversations only. For example, some of the difficalculations are best

163



communicated with worksheets and verified usingm@ated tests. However, much like
stories and the wall, these story tests still negface-to-face communication in order for
the experts to explain the main concepts behinadakmilations.

In order for story tests to become the informatadiator, it needs to be easily
visible, understandable and kept updated, whiethig using the examples of the domain
is important. It is the universally common notatfonboth the customers and the
developers. The visibility comes from the executdthe automated story tests. The
results of the story tests against the code worddige a red or green light on how the
information is being translated into software. fere, story tests can act as a much
more concrete information radiator than storiesabee they provide an up-to-date status
against the live code.

In addition, story tests should be seen as docutientfor software. As seen in
Chapter 6, when tests link the code to the examjlast only provides documentation
of how the calculation works, but also the busireesgext in which software results will
be used. Because of the traceability between te and the examples through
automated tests, story testing provides a greattavégave behind documentation about
how the software works using examples and execaitabts for validation. These story
tests are valuable documentation artefacts abewdfiware that customers can read and
understand. Therefore, creating these story tasisld be treated as a documentation and
knowledge building process rather than tasks thitteelp the developers. In addition,
the management should see the value in buildinly koowledge repositories, which will

become valuable resources for the company eveutlier future uses.

164



Previous studies suggest that story testing cgnéadryone to understand
quickly what has been developed [GHHWO05, TKHDOG)r Gtudies suggest that story
testing can further help the team by providingrdormation repository that can be
valuable even after the software development ispteted. It also suggests that Story
Test Driven Development is meant for building kneelde-intensive type of software —
ones that require a great deal of domain expéktisevledge and where software

developers do not have much training in the domain.

8.4 Rewards and M otivation

The most influential theory on motivation is therizberg’s two-factory theory of
satisfaction and motivation [HMS59]. The theorytasathat employee satisfaction can be
divided into intrinsic factors and extrinsic facto he intrinsic factors are related to the
work that is being done, such as recognition, agment, responsibility, advancement,
and personal growth. On the other hand, the extrfastors, such as company policies,
supervisory practices, pay plans and working camustdo not have a high influence on
motivations, because they are not directly relédathe task at hand. Therefore,
organizational changes that deal with extrinsi¢dieecdo not necessarily increase in the
employee satisfaction.

In terms of the studies done in software engingeHall et al. published a study
on what motivates software developers [HSB+08].yTilentified 21 factors and
categorized them into intrinsic and extrinsic fastd he intrinsic factors include
identifying with the task, career paths, varietymafrk, recognition for work done,

addressing development needs, technically chalgngork, making a contribution,

165



trust/respect, equity and employee participatidre &xtrinsic factors were good
management, sense of belonging, rewards and inesnfeedback, job security, good
work/life balance, appropriate working conditioesccessful company and sufficient
resources. Extrinsic motivators are general workimigditions and general good
management, but these factors have less influemtieeomotivation of software
developers. Therefore, the study concludes thktliased management may be better for
software developers, because it itemizes the cigaeinto a list of problems that the
developers must solve.

To the best of our knowledge, there is no resedocte on what motivates
customers to participate in the software develogmescess, particularly on Story Test
Driven Development. The people who fill the roletloé ‘customers’ in Agile teams may
not be the employees of the company. These petgadeauld come from diverse
backgrounds. Therefore, it is difficult to categertheir motivating factors.

Based on Chapter 6 and 7, we only witnessed 3eo? thmotivating factors from
the domain experts. They are 1) identifying wita thsk 2) recognition and 3) sufficient
resources. The other motivators were not readibeolable. Borrowing the term from
Hall et al.’s work, “identifying with the task” mea having clear goals, having a personal
interest in the problem, knowing the task’s purpasé how they fit with the whole
work. In addition, the worker needs to be ablertmpce an identifiable piece of quality
work [HSB+08]. In Chapter 6, the domain experts aaiear role in the software
development process. They also created and magatéie story tests. The artefacts that

they produced, which are used as story tests |eadidentifiable pieces of work. Their

166



work is also integrated into the whole softwaretigh the automated tests. Therefore,
the impact of their work is clearly identifiableezy time the automated tests are run.

We also observed that the domain experts requiteaa set of measurable goals
on what is needed of them, which was observahi®ih Chapter 6 and 7. Eg. How
many story tests are required from them or how nexamples are required? It allows
the domain experts to count down how many they te@tdoduce and gives them the
motivation to finish their work. In addition, theyould be rewarded with the feeling of
accomplishments. However, having these goals wasnaugh as seen in Chapter 7. The
domain experts knew what was expected of themthieytneeded recognition for their
work.

In Chapter 7, we observed the importance of re¢mgniCreating, collecting and
maintaining story tests was not an organizatioméibtive. Therefore, the work that the
domain experts had to put in for creating storyst@ss extra to their assigned tasks.
From the domain experts’ point of view, the stagts not only provided little to no
personal reward, but it would become a hindrandbdo other assigned tasks. The major
hindrance was the lack of time. Therefore, the doraaperts did not have sufficient
resources to complete the story tests. While esitrifactors such as having sufficient
resources does not guarantee success, the studgtewithat extrinsic factors can
become a major hindrance for writing story tests.

Ahn et al. published a paper on the use of humamatation for solving novel
computer problems that require human brains [ALBXB05, AD08]. The finding of
their work is that people are willing to contributata for their study in exchange of

gaining personal entertainment. The studies shawtkiere is an intrinsic motivation for

167



non-employees to spend considerable amount ofghosding data in exchange for
personal rewards. These intrinsic factors areedlad the need to satisfy their intellectual
curiosity.

Given the right kind of rewards, we know that peopill contribute as seen in
Ahn’s work. Our findings indicate that people wkcome an information contributor
only if they can also become the information consurimformation contribution is
clearly a process that requires both give and take.

In addition, the rewards need to be given out syateally. Therefore, our study
suggests that customers require direct and systereatard for a set of story tests that
they contribute. Our contribution to the acadenudyof knowledge is to view
customer’s involvement in Story Test Driven Devahgmt as an activity that requires
personal rewards and motivations, rather than Wiew an activity that is done for the
good of the team. Even though the entire teambeitiefit from the technique, STDD is
hard to execute without the proper rewards andvatins for the customers to

participate.

8.5 Community of Contributors

According to Martin et al., there are eight typéswustomer practices [MBNO9]:
Customer Boot Camp, Customer’s Apprentice, CustdPagéing, Programmer Holiday
Support, Programmer On-Site, Roadshow, Big Pidtlpd-ront, and Recalibration.
Martin et al. discovered that customers participatiie process in varying degrees. For
example, in Customer’s Apprentice, the developerkwn the customer team so that

they can understand the complexity of the custdesns’ role [MBNO9]. In Big Picture

168



Up-Front, the business stakeholders are only irahuring the envisioning process
[MBNO9]. In these situations, the customers aredi@ctly involved in the development.
Our studies suggest that this kind of relationshiip the customers do not work very
well for Story Test Driven Development.

In Customer Pairing, two members of the custom@mtwork together to provide
a “single-voice” to the developers. We have noké&xbinto situations such as this, but
we observed that Story Test Driven Development goegide a single-voice to the
developers no matter how many customers are ingplyecause the story tests can only
pass in one way.

In Customer Boot Camp, the customers are giveairinig event. We discovered
that more training does not necessarily improveothezall adoption. It is better to
accommodate the customers in a way that they caadl reuse their existing
knowledge and skills.

In Programmer Holiday, the customers are givenrktahead time. This is a
necessary condition in order for Story Test Dril@velopment to succeed, because the
story tests need to be generated before the develubegins.

In another Martin et al. paper [MBNO9b], they digered that customer team
always exists in Agile teams, but their roles affecent. These roles range from
“Acceptance Tester” to “Political Advisor” and “SeipSecretary”. Because of these
differences in their roles, we observed that itriportant to create a community of
contributors, especially using formats and toolthefdomain. It is not enough to just
assign one specialized person to be responsibtéédansk of writing the tests. The entire

customer group needs to be aware of the storyaest# should be understandable to all

169



of them in such a way that anyone can participatee Story Test Driven Development
process.

In Chapter 6 and 7, we observed the importancaahly a community of
contributors. In the field of Open Source developtmesearch, Bekler [Be02] and
Markus et al. performed research in terms of omgtitnal innovation and virtual
organization [MMAOO]. One of the main charactedstof Open Source development is
that there is no direct monetary compensationtfeir tparticipation [BLO1]. Therefore,
the assumption is that their participation is base@ltruism. However, some observed
that altruism may not be the motivating factorsttme open source projects, the
contributors are highly individualistic and seelgtin reputation, future career
opportunities, peer recognition, better software even financial rewards
[FFO1,HO02,T98].

We observed in Chapter 6 and 7 that having a corntynisran important factor,
because the personal reward would not exist wittleiexistence of the community.
These types of rewards are different from monatamards given from supervisors
where the rewards are negotiated ahead of tim&eAdiscussed before, one of the
personal rewards is a form of respect from the camty, which cannot exist without
the people who form the community. Bergquist apuhberg used the term Gift culture
to describe such phenomenon in the open source oaitynfBLO1]. A gift culture
exists in a community where gifts are given withobligation to repay. The motivation
for the givers is to gain fame and respect fromciimunity [BLO1]. Therefore, having

a community is an important pre-requisite for gagniihe reward for the giver.

170



Another model is the Wikipedia type of contributsoiNot everyone can
participate in the Open Source community evenaf/tivant to, because the source code
is usually controlled by a select few individualgerefore, the open source community is
actually quite closed and much more structured tizet most people believe. On the
other hand, examples such as Wikipedia are truénap everyone for contribution
(although some may say there is less contributiese days). The wiki community also
depends on having a community of contributors,thetlimiting factors are contributors’
skill sets and their motivations.

In the wiki community, researchers have observdteur that they call,

“selfish altruism”, which is based on the prisosatilemma. Prisoner’s dilemma refers to
situations where individuals seek to gain the rseffiish payoff instead of cooperating
with others in an event when there is no coordamatir communication with the others.
However, given repeated prisoner’s dilemma situtioghe game theorists observed that
participants will choose the most optimal solutiajch is cooperating with each other
[A84, D89]. The cooperation only lasts as well l@aggthe other side is also willing to
cooperate. This model is referred to as “selfistusm”, because the cooperation only
lasts as long as the participant is gaining theardwAnother model is “reciprocal
altruism” where the participant will contribute Wwian expectation that they will receive
their reward in the future [T79].

In Chapter 7, the original developer controlled hbe story tests were generated
and maintained. We observed that the domain expents reluctant to contribute in this
model. In this model, even though everyone, in thewan contribute, the actual changes

are monitored by a select few individuals. This elddiled to gain enough motivation

171



from other contributors. On the other hand, the @ilorexperts controlled how the story
tests were generated and maintained in Chaptereh though they were both using the
same model, it seems to be more successful ifub®mers have the control of the story
tests writing process.

In Chapter 6, we observed that people contributestmvhen they are given a set
of loose structures to follow, but they were freeontribute in the format that is
comfortable to them. Therefore, we believe thatitiiteation into such a knowledge
building process should be low that almost anyoitkimthe team (and even outside of
the team) would be happy to contribute to the examgpository of story tests. The
success of Story Test Driven Development is n@raducing better testing methods, but
in fostering the community of contributors wheremswne can produce rewards and

motivations for each other.

172



CHAPTER 9: CONCLUSION
This dissertation investigated uses of Story Testdd Development in Agile
software development teams. There are three ms@areh questions: 1) What problems
are faced by Agile teams in practicing Story Tesv&nh Development? 2) Investigate the
relationship between stories, teams and defect&/Hajt are the factors that lead to
successful adoption of Story Test Driven Developtfélie explored these questions

using four case studies.

9.1 Summary of Findings

The findings led to four themes that are importarthe success of Story Test
Driven Development: Examples of the Domain, Stoegtlas Knowledge Repository,
Rewards and Motivations, Community of Contribut@sir analyses suggest that Story
Test Driven Development is a knowledge buildinggess, rather than a software testing
process.

Story Test Driven Development is a way for cust@rierengage in software
product creation in a much more direct way tharothethods. Because story tests are
examples of the domain, these artefacts can bengtgdst for one version of software
but used for building multiple versions of softwareeven multiple families of software.
The value of the creating, collecting and maintagrstory tests increases if the team is
building a larger software product, especiallyhé product is a knowledge intensive type
of software.

We also discovered that the main problem with ttaetce of Story Test Driven

Development may lie in the difficulty with the caster participation. We presume that

173



customers require rewards and motivations thatiéfierent than developers. We have
some evidence that the customers follow the se#fishistic model. In order for this
model to succeed, the team may require a commahdgntributors. The rewards and
motivations may be directly linked to having a bileacommunity of contributors. In
terms of the rewards, we discovered that the custeimecome both information
consumer as well as the provider. Therefore, thaurgs must be personal in nature
rather than altruistic. Our studies indicate that$uccess of Story Test Driven
Development may lie in fostering the community ohtibutors who are willing and

able to create and maintain the story tests, isiréisearch still requires more evidence.

9.2 FutureWork

The studies in the dissertation suggests thabthey Test Driven Development is
particularly useful in situation where the develspeeed to write software in customer’s
domain that is very unfamiliar and require a lotrafning to understand. Our studies
suggest that the story tests can be a useful comation medium for transferring
domain knowledge, but it needs to be written inran&at that is comfortable to the
customers. In order to get the customers to ppdieiin this process, the team needs to
be building a community of contributors. It is ratough to just assign a task to one
customer to provide these story tests. In addithom,studies suggest that the ownership
of these tests must belong to the team, so thati@eoe free and willing to contribute.

In the future work, we would need to look at thiedent types of customers and
see how they react to writing story tests. It wdoddalso interesting to look at the

differences in roles and skills even within thetouser group. It would be also

174



interesting to look at how different domains likevtrite their story tests and analyze how
it influences the test automations for the devaipps well as the overall adoption of

Story Test Driven Development.

9.3 Main Contribution

The main contribution of this research is to appho&tory Test Driven
Development as a communication tool for conveylrggdomain knowledge using
examples of the domain. Story Test Driven Develapgea knowledge building process
rather than a testing process. Story testing uskagnples is a way to spread out the
domain knowledge and the necessary requiremertsnation to the whole team using
tests that can help confirm one’s understandinh®tomain as well as ensure that
software behaves according to the examples providstead of focusing on what is
right for the test automation, we need to emphastzat is right for better

communication with all stakeholders.

175



References

[AO4] Andrea, J., Putting a Motor on the Canoo WestTAcceptance Testing
FrameworkProc. of the ¥ International Conference on Extreme Programming,
2004,pp. 20-28

[AO7] Andrea, J., Envisioning the Next Generatidri-anctional Testing Tools, IEEE
Software, Vol. 24, Iss. 3, May/June 2007, pp. 526

[A11] Agile Manifesto,www.agilemanifesto.orgetrieved April 2011

[A84] Axelrod, R.,The Evolution of CooperatiomBasic Books, New York, 1984

[AAO7] Agile Alliance Functional Testing Tools Visning Workshop, Oct 2007,
Portland, Oregon, www.agilealliance.org/show/1938

[AAQ8] Agile Alliance Functional Testing Tools Visining Workshop, Agile 2008,
Toronto, Canada

[AA11] AAFTT Community Mailing List,http://cf.groups.yahoo.com/group/aa-

ftt/summary retrieved April 2011

[ABO4] Andersson, J., Bache, G., The Video Storeisteed Yet Again: Adventure in
GUI Acceptance TestinggP 2004, LNCS 309pp. 1-10

[ABO5] von Ahn, L., Blum, M., Human Computation, .Bh Dissertation, Carnegie
Mellon University, 2005

[ABLO9] Abbattista, F., Bianchi, A., Lanubile, FA, Story-Test Driven Approach to the
Migration of Legacy SystemXP 2009, LNBIP 31, pp. 149-154

[ABS03] Andersson, J., Bache, G., Sutton, P., Xth Wicceptance-Test Driven
Development: A Rewrite Project for a Resource Ozaition SystemProc. of

the 4" International Conference on Extreme ProgrammR@)3, pp. 189-197

176



[ABVO5] Andersson, J., Bache, G., Verdoes, C., Muleading and Web Applications:
Further Adventures in Acceptance TestiKg, 2005, LNCS 355¢p. 210-213

[ADO6] Abrams, S., Deflorio, P., More than Videoderencing: Trials of a Sidebar
Voice System for Distributed Studie$®Zoncurrent Engineering Workshop for
Space Applications, European Space Agency, ESTEGrdwijk, The
Netherlands, Oct 19-20, 2006

[ADO8] von Ahn., L., Dabbish, L., Designing gamegha purpose, Communications of
the ACM, Vol 51, Iss.8, August 2008

[ALBO6] von Ahn, L., Liu, R., Blum, M., Peekaboora:game for locating objects in
imagesProc. Of the SIGCHI conference on Human Factor€amputing
SystemsApril 2006

[An04] Andrea, J., Generative Acceptance Testimgodficult-to-Test SoftwareProc.
XP 2004 LNCS Vol. 3092, pp. 29-37, 2004

[ARSO7] Abath, O., Rocha, E., Sauve, J., Experiddeport. Using Easy Accept to Drive
Development of Software for an Energy Compdfrgc. Workshop SAST 2007,
pp. 79-84

[BO2] Beck, K., Test Driven Development: By Exampieldison-Wesley Professional,
2002

[BO4] Beck, K.,Extreme Programming Explained: Embrace Change, i&kE&alition,
Addison-Wesley Professional, 2004

[BO8] Bardram, J., Activity-based Computing SupgdortAgile and Global Software
Development|n Proc. Of 2008 Computer Supported Cooperating kior

Workshop on Supporting Distributed Team Work, Sagb, CA, USA, 2008

177



[B90] Babbie, E.Survey Research Methodadsworth, 1990

[B99] Beck, K.,Extreme Programming Explainedddison-Wesley, 1999

[Ba02] Barabasi, Al.inked: How Everything is Connected to EverythitgeEPerseus
Publishing, Cambridge, MA, 2002

[BBO1] B.Boehm and V. Basili, Software Defect Retioic Top 10 ListJEEE
ComputerVol. 34, No. 1, pp. 2-6, January 2001

[Be02] Benkler, Y., Coase’s Penguin, or Linux ariee Nature of the FirnlThe Yale
Law Journal, 112:3, 2002, pp. 369-446

[BEO5] Brandes, U., Erlebach, Network Analysis: Methodology FoundatiohBlCS
3418, Springer, 2005

[BLO1] Bergquist, M., Ljungberg, J., The Power aft& Organizing Social
Relationships in Open Source Communitiegrmation Systems Journéill),
2001, pp. 305-320

[BSL99] Basili, V., Shull, F., Launibile, F., Buildg knowledge through families of
experiments|EEE Transactions on Software Engineeriugl. 25, pp. 456-473,
1999

[CO04] Cockburn, A.Crystal Clear: A Human-Powered Methodology for Srileams
Addison-Wesley, 2004

[C04] Cohn, M. User Stories Applied: For Agile Software Developtnaddison-
Wesley Professional, 2004

[CO7] Crowdware, http://www.exampler.com/blog/20007/14/crowdware

[C09] Cohn, M. ,Succeeding with Agile: Software Development Usorgr8, Addison-

Wesley Professional, 2009

178



[C74] Colton, T. Statistics in Medicingelittle, Brown, pp. 211, 1974

[CDO7] Chubov, I., Droujkov, D., User Stories andc&ptance Tests as Negotiation
Tools in Offshore Software DevelopmeRE 2007, LNCS 453®p. 167-168

[CGO09] Crispin, L., Gregory, J., Agile Testing:PXactical Guide for Testers and Agile
Teams, Addison-Wesley Professional, 2009

[CHO1] Crispin, L., House, T., Testing in the Faahe: Automating Acceptance Testing
in an Extreme Programming Environment, XP/Unive&Zsaference, 2001

[CHRPO3] Cheng, L.-t.., Hupfer, S., Ross, S., Patte, J., Jazzing up Eclipse wit
collaborative tools, OOPSLA workshop on eclipséntestogy eXchange, Proc. of
the 2003 OOPSLA workshop on eclipse technology @Xge, Anaheim,
California, pp. 45-49, 2003

[CHS+03] Cheng, L.-t., de Souza, C. Hupfer, S.tdPabn, J., Ross, S., Building
collaboration into IDEsQueue Vol. 1, Iss. 9, pp. 40-50, 2003

[CHWO1] Crispin, L., House, T., Wade, C., The NéedSpeed: Automating Acceptance
Testing in an eXtreme Prog. EneXtreme Prog. and Flexible Proc. in Soft. Eng.,
2001, pp. 96-104

[CMKO9] Connolly, D., McCaffery, F., Keenan, F., faumating Expert-Defined Tests: A
Suitable App. for the Medical Device IndEyro. Conf. on Soft. Proc. Imp.,
2009, 32-43

[CKMO09] Connolly, D., Keenan, F., McCaffery, F., Bdoping acceptance tests from
existing docum. using annot.: An Experimd@SE Works. on Auto. of Soft. Test

2009, 123 - 129

179



[CSGMO06] Chen, J., Smith, M., Geras, A., Miller, Nlaking Fit/FitNesse Appropriate
for Biomedical Engineering ResearetR 2006, LNCS 4044p. 186-190

[DO0] Dongen, S., Graph Analysis and Graph ClusterinClustering by Flow
Simulation Chapter 2, Wiskunde en Informatica Proefschrif900, pp. 17-24

[D11] DSDM consortiumwww.dsdm.org retrieved April 2011

[D89] Dawkins, R.The Selfish Gen&™ ed. Oxford University Press, Oxford, 1989

[D92] Davis, A., Operational Prototyping: A New D#@pment Approacltoftware,
9(5), pp. 70-78, 1992

[DDO08] Dyb4, T., Dingsayr, T., Empirical studiesaifile software development: A
systematic reviewinformation and Software Technolodg@ (2008), pp. 833-859

[DWMO7] Deng, C., Wilson, P., Maurer, F., Fitclipge Fit-based Eclipse Plug-in for
Executable Acceptance Test Driven Development,.Bibcinternational
Conference on Agile Processes in Software Engingennd eXtreme
Programming (XP 2007)

[DLO6] Derby, E., Larsen, D. Schwaber, Rgile Retrospectives: Making Good Teams
Great,Pragmatic Bookshelf, 2006

[DMGO7] Duvall, P., Matyas, S., Glover, AContinuous Integration: Improving
Software Quality and Reducing Rigiddison-Wesley Professional, 2007

[ER11] Energy Resources Conservation Bohtth://www.ercb.ca/

[E96] European Software Institute, "European Usew&y Analysis", Report USV_EUR

2.1, ESPITI Project, January 1996.

180



[EWO06] Elssamadisy, A., West, D., Adopting agilagices: an incipient pattern
languageProc. Of 2006 Confernece on Pattern Languages ofRims,Portland,
Oregon, USA

[FO1] Finsterwalder, M., Automatic Acceptance TdetsGUI Applications in an
Extreme Programming Environmetoc. of the 2 Int. Conf. on Extreme Prag.
2001, pp. 114-117

[FO7] Frost, R., Jazz and eclipse way of collaborelEEE Software24(6), 114-117,
2007

[F11] Fowler, M., XUnit,http://www.martinfowler.com/bliki/Xunit.htmlretrieved April

2011

[F85] Fairley, R., Software Engineering ConceptsQvaw-Hill, New York, 1985

[FO9] Fowler, M., Beck, K., Brant, J., Opdyke, VRgberts, D.Refactoring: Improving
the Design of Existing Codaddison-Wesley Professional, 1999

[FFO1] Fitzgerald, B., Feller, J., Open Source Baft: Investigating the Software
Engineering, Psychosocial and Economic Isskdsrmation Systems Journal
(11), 2001, pp 273-276

[FK93] Kemerer, C., Fichman, R., Adoption of Soft@&ngineering Process
Innovations: The Case of Object OrientatiSigan Management Review/Winter,
1993, pg. 7-22

[Fit11] Fit, fit.c2.com

[Fitn11] Fitnesse, fitnesse.org

[FitL11] FitLibrary, http://sourceforge.net/projects/fitlibrary/

[FitC11] FitClipse,http://sourceforge.net/projects/fitclipse/

181



[Fol1l] Fowler, M., Specification by Example,

http://www.martinfowler.com/bliki/SpecificationByExnple.htm| retrieved April
2011

[FP97] Fenton, N., Pfleeger, Software Metrics: A Rigorous and Practical Approach
PWS Publishing, 1997

[FPP98] Freedman, D., Pisani, R., Purves SRatistics, % Ed.,Norton & Company,
1998

[GO1] Greenhalgh, T., How to Read a Pap&te2l. BMJ Publishing Group, London,
2001

[G11] Greenpeppewww.greenpeppersoftware.com

[GBGPO7] Gobbo, F., Bozzolo, P. Girardi, J., Pége,Learning Agile Methods in
Practice: Adv. Educ. Aspects of the Varese XP-U@dfience XP 2007, LNCS
4536, pp.173-174

[GBL+04] Grossman, F., Bergin, H., Leip, D., Metris., Gotel, O., One XP Experience:
Intro. Agile (XP) Soft. Development into a Cultutet is Willing But Not Ready,
CASCON '04

[GHHWO05] Gandhi, P., Haugen, N., Hill, M., Watt,,RCreating a Living Specification
using FIT documents, Proc. of the Agile Conferep@@5, July 24-29, pp. 253-
258

[GMO7] Grewal, H., Maurer, F., Scaling Agile Methaldgies for Developing a
Production Accounting System for the Oil & Gas Istiy, Proc. of Agile 2007

(2007)

182



[GMSO05] Geras, A., Miller, J., Smith, M., Love, & Survey of Test Notations and Tools
for Customer Testing{P2005,LNCS 3556, pp. 109-117

[GS67] Glaser, B, Strauss, Mjscovery of Grounded Theory: Strategies for Qasile
ResearchChicago, Aldine, 1967

[HO2] Highsmith, J.Agile Software Development Ecosysteftk]ison-Wesley
Professional, 2002

[H99] Hand, D., Statistics and Data Mining: Inteten Disciplines, ACM SIGKDD
Exploration, Vol 1, Iss. 1, pp. 16-19, June 1999

[HFO1] Hooks, 1., Farry, K., Customer-centered pratg: Creating successful products
through smart requirements management. AmericaralylEment Association,
New York, NY, 2001

[HHO4] Hassan, A., Holt, R., The small world of sedre reverse engineeringjorking
Conference on Reverse Engineering: IEEE Computeie§62004

[HHO8] Haugset, B., Hanssen, G., Automated Accegaairesting: A Literature Review
and an Industrial Case Study, Proc. of Agile 2@@8,27-38

[HHO9] Hanssen, G., Haugset, B., Automated Accegtafesting Using Fit, 42 Hawaii
International Conference on System Sciences, 3929,-8

[HKO6] Holmes, A., Kellogg, M., Automating FunctiahTests using SeleniurAgile
Conference 2006

[HMS59] Herzberg, F., Mausner, B., Snyderman,TBg motivation to workNew York,

Wiley, 1959

183



[HOO02] Hars, A., Ou, S., Working for Free? Motivatis for Participating in Open
Source Projectdnternational Journal of Electronic Commerdé;3), 2002, pp.
25-39

[HSB+08] Hall, T., Sharp, H., Beecham, S., Badd¥g,Robinson, H., What do we
know about developer motivationEEE Software25(4), pp. 92-94

[111] Rational Software Development Company, Radlddnified Process: Best Practices
for Software Development Teams, Rational Softwatet®Paper, TP026B, Rev
11/01,

http://www.ibm.com/developerworks/rational/libragghtent/03July/1000/1251/1

251 bestpractices TP026B.pdétrieved April 2011

[190] IEEE, IEEE Std 610.12-1990: IEEE Standard Glossary ofv&oE Engineering
Termionlogy|EEE Computer Society Press, Los Alamitos, CA,dL99

[JO8] JUNG, http://jung.sourceforge.net/doc/indéxlin

[J11] JUnit.orgwww.junit.org retrieved April 2011

[J97] Jones, C. (eds), Software Quality: Analysid &uidelines for Success,
International Thomson Computer Press, 1997

[Jall] IBM Rational JazAttp://www-01.ibm.com/software/rational/jazzétrieved on

May 2011
[Ji11] Jira, http://www.jira.com/
[JMO1] Juristo, N., Moreno, ABasics of Software Engineering Experimentation

Kluwer Academic Publishers, 2001

184



[JMDO04] Javed, T., Magsood, M., Durrani, Q., A Stud Investigate the Impact of
Requirements Instability on Software Defects, ACMt®&are Engineering Notes,
Volume 29, Number 4, May 2004

[JSG+06] Jacovi, M., Soroka, V., Gilboa-Freedman,\@, S., Shahar, E., Marmasse, N.,
The Chasms of CSCW: A citation graph analysis ef@$CW conferenc@roc.
of Computer Supported Cooperative Wdlanff, Canada, pp. 289-298, Nov.
2006

[KO3] Kaner, C., “Cem Kaner on Scenario Testinge Hower of ‘What-If...” and Nine
Ways to Fuel Your Imagination, Better Software,)5@%-22, 2003

[KO6] Kongsli, V., Towards Agile Security in Web Afcations, Proc. of the Companion
to the 23 ACM SIGPLAN Symposium OOPSLA, October 2006

[KO7] Kongsli, V., Security Testing with Seleniufroc. of Companion to the SOACM
SIGPLAN Conference on OOPSLA 2007, pp. 862-863

[K10] Keith, C.,Agile Game Development with Scruiddison-Wesley Professional,
2010

[K11] Kerievsky, J. Storytestindpttp://industrialxp.org/storytesting.htpmetrieved April

2011

[K93] Karunanithi, N., A Neural Network Approachrf§oftware Reliability Growth
Modeling in the Presence of Code ChuRmc. of International Symposium on
Software Reliability Engineerind993, pp. 310-317

[K97] Kanigel, R.,The One Best Way: Frederick Winslow Taylor and&higgma of

Efficiency,Penguin Books, 1997

185



[KAGNM96] Khoshgoftaar, T., Allen, E., Goel, N., Rdi, A., McMullan, J., Detection
of Software Modules with High Debug Code Churn Meay Large Legacy
SystemProc. of International Symposium on Software RdliglEngineering,
1996, pp. 364-371

[KPGMO09] Khandkar, S., Park, S., Ghanam, Y., Mauker FitClipse: A Tool for
Executable Acceptance Test Driven Development,.Rrfo€P 2009 pp. 259-260

[KNRO9] Kim, E., Na, J., Ryoo, S., Developing a Tastomation Framework for Agile
Development and TestingP 2009, LNBIP 31, pp.8-12

[LOO] Leffingwell, D., Widrig, D.,Managing Software Requirements: A Unified
Approach Addison-Wesley, Reading, MA, 2000

[L11] Leffingwell, D., Agile Software Requirements: Lean Requirementstieescfor
Teams, Programs and the Enterprigeldison-Wesley Professional, 2011

[MO1] Miller, R., Collins, C. Acceptance Testing.de. XPUniverse 2001, July, 2001

[MO3] Miller, R., Managing Software for Growth: Wibut Fear, Control and the
Manufacturng Mindset, Addison-Wesley, 2003

[MO5] Martin, R., The Test Bus Imperative: Architeres that Support Automated
Acceptance TestindgEEE Software, July/August 200%). 65-67

[MO7] Melnik, G., Empirical Analyses of ExecutalAeceptance Test Driven
Development, University of Calgary, PhD Thesis, 200

[MO8] Mugridge, R., Managing Agile Project Requirents with Story Test Driven
Development, IEEE Software, 25(1), 2008, pp. 68-75

[M11] Marick, B., Example-Driven Developmerttitttp://www.exampler.com

186



[M97] Montgomery, D.Design and Analysis of Experiment8,etlition,John Wiley &
Sons, 1997

[Ma08] Mathur, A.,Foundations of Software Testingearson Education, 2008

[MBNO9] Martin, A., Biddle, R., Noble, J., XP Custer Practices: A Grounded Theory,
Agile 2009, IEEE Computer Society, Chicago, 2009

[MBNO9b] Matrtin, A., Biddle, R, Noble, J., The XRPu€tomer Team: A Grounded
Theory, Agile 2009, IEEE Computer Society, ChicaZ@)9

[MCO5] Mugridge, R., Cunningham, W., Agile Test Gpwsition,Proc. of the 8
International Conference on Extreme Programm@5, LNCS 3556, pp. 137-
144

[ME98] Munson, J., Elbaum, S., Code Churn: A Meador Estimating the Impact of
Code Change&rroc. of IEEE International Conference on Softwisl@ntenance,
1998, pp. 24-31

[Mo03] Mogyorodi, G., What is Requirements-Basedting?, CROSS TALK, The
Journal of Defense Software Engineering, March 2003

[MLSMO04] Muller, M., Link, J., Sand, R., Malpohl,.GExtreme Programming in
Curriculum: Experiences from Academia and Industiy 2004, LNCS 3092,
pp.294-302

[MMO5] Melnik, G., Maurer, F., The Practice of Sffging Requirements using
Executable Acceptance Tests in Computer Sciences€suProc. 20
International Conference on Object-Oriented Prognarg, Systems, Languages

(OOPSLA), ACM Press, 2005

187



[MMO7] Melnik, G., Maurer, F., Multiple perspectis®n Executable Acceptance Test-
Driven Development, 8International Conference on Agile Processes ivBog
Engineering and eXtreme Programming (XP 2007)

[MMO8] Matrtin, R., Melnik, G., Test and RequiremgnRequirements and Tests: A
Mobius Strip, IEEE Software, 25(1), pp. 54-59

[MMAOQO] Markus, M., Manville, B., Agres, C., What &kes a Virtual Organization
Work?,Sloan Management Revielall 2000, pp. 13-26

[MMCO06] Melnik, G., Maurer, F., Chiasson, M., Ex¢able Acceptance Tests for
Communicating Business Requirements: Customer Reagents)n Proc. of
Agile 2006 conferencep. 35-46

[MMRO3] Mugridge, R., MacDonald, B., Roop, P., Ag€omer Test Generator for Web-
based SystemXP 2003, LNCS 267%p. 189-197

[MPS08] Moser, R., Pedrycz, W., Succi, G., A Conapize Analysis of the Efficiency of
Change Metrics and Point Code Attributes for Deferetdiction, Proc. of 30
International Conference on Software Engineerir@ptig, Germnay, pp. 181-
190, 2008

[MRMO04] Melnik, G., Read, K., Maurer, F., Suitalbyliof FIT User Acceptance Tests for
Specifying Functional Requirements: Developer Rastpe, Proc. XP/Agile
Universe 2004, LNCS, Vol. 3134, Springer Verlag;/&) 2004

[MR96] Maiden, N., Rugg, G., ACRE: Selecting Metkddr Requirements Acquisition,
Software Engineering Journdl1(3), 183-192, 1996

[MSO07] Miller, J., Smith, M., A TDD Approach to Irdducing Students to Embedded

Programming, ACM SIGCSE Bulletin, Vol. 39, Iss.S&ptember 2007, pp. 33-37

188



[MTO3] Mugridge, R., Tempero, E., Retrofitting arm@eptance Test Framework for
Clarity, Proc. Agile Development Conferen@03, pp. 92-98

[N11] NUnit.org,www.nunit.org retrieved April 2011

[NBO5] Nagappan, N., Ball, T., Use of relative carteirn measures to predict system
defect densityProc. of the 2 International Conference on Software
EngineeringSt. Louis, USA, pp. 284-292, 2005

[NG04] Newman, M., Girvan, M., Finding and EvaluatiCommunity Structure in
Networks,Physical Review, 6926113, 2004

[NMO5] Nielsen, J., McMunn, D., The Agile Journegdpting XP in a Large Financial
Services OrganizatiotxP 2005, LNCS 355¢p. 28-37

[O78] Ohno, T.,Toyota Production System: Beyond Large-Scale Pitooluc
Productivity Press, 1978, translated into Englisth988

[OMO08] Ordelt, H., Maurer, F., Acceptance Test Refang, XP2008,Limerick, Ireland,
Springer, 10-14 June 2008

[OPQ9] Onions, P., Patel, C., Enterprise SoBA: keasgale Implementation of
Acceptance Test Driven Story Car&@spc. of IEEE Int. Conf. on Inf. Reuse &
Int., pp. 105-109, 2009

[OWBO04] Ostrand, T.J., Weyuker, E.J., Bell, R.M.h&¥e the Bugs Ardlroc. of the
2004 ACM SIGSOFT International Symposium on Soéwasting and Analysis
(ISSTA), pp. 86-96, 2004

[P10] Pichler, R.Agile Product Management with Scrum: Creating Praduhat

Customers Lovedddison-Wesley Professiona, 2010

189



[P63] Popper, K. R. (1963) Conjectures and Refoitati The Growth of Scientific
Knowledge, New York: Basic Books

[P94] Pfleeger, Experimental Design and AnalysiSaftware EngineeringhCM
Sigsoft, Software Engineering Not&8(4), 20(1), 20(2), 20(3), 1994-1995

[Pa02] Patton, M., Qualitative Research and Evalnad¥lethods, Sage Publications,
2002

[PFO2] Palmer, S., Felsing, A Practical Guide to Feature-Driven Development,
Prentice-Hall, 2002

[PKO8] Port, D., Korte, M., Comparative Studiestod Model Evaluation Criterions
MRRE and PRED in Software Cost Estimation Resea&tobg. of International
Symposium on Empirical Software Engineering and $dleament (ESEM), Oct.
9-10, Kaiserlautern, Germany, 2008

[PMO8] Park, S., Maurer, F., The Benefits and Ghades of Executable Acceptance
Testing, Workshop on Scrutinizing Agile, In Conjtina with ICSE 2008

[PMO9] Park, S., Maurer, F., Communicating Domaimolledge in Executable
Acceptance Test Driven DevelopmeXE2009, LNBIP 31iviay 2009, pp. 23-32

[PPO3] Poppendieck, M., Poppendieck,Jean Software Development: An Agile
Toolkit, Addison-Wesley, 2003

[PP0O6] Poppendieck, M., Poppendieck,linplementing Lean Software Development
From Concept to Casiddison-Wesley Professional, 2006

[PP0O9] Poppendieck, M., Poppendieck,Jeading Lean Software Development: Results

are Not the PointAddison-Wesley Professional, 2009

190



[PWO03] Pawson, R., Wade, V., Agile Development dditaked Objectsroc. of the &
XP 2003, LNCS 26797-103

[RO4] Rogers, R., Acceptance Testing vs. Unit TestA Developer’s Perspectivieroc.
of Extreme Programming in Agile Methods, 2004, LNC$4,pp. 22-31, 2004

[R11] Robot Frameworlkyttp://code.google.com/p/robotframework/

[R93] Robson, C Real World Research: A Resource for Social Scisrdisd
Practitioners-ResearcherBlackwell, 1993

[RO3] Reichlmayr, T., The agile approach in an ugdeduate software engineering
course project33® Annual Frontiers in Education, 2008p. 13-18, S2C Vol. 3

[RO4] Reppert, T., Don’t Just Break Software, M&dadtware: How Story-Test Driven
Development is Changing the Way QA, Customers,extlopers WorkBetter
Software 6(6)18-23, 2004

[RW73] Rittel, H., Webber, M. “Dilemmas in a Genlefaeory of Planning”Policy
Sciences4, 155-169, 1973

[RMMO5] Read, K., Melnik, G., Maurer, F., Studentderiences with Executable
Acceptance Testing, Proc. Agile 2005 Conferenc8520

[RMMO5b] Read, K., Melnik, G., Maurer, F., Examiginsage patterns of the FIT
acceptance testing framework, ProB.I6ternational Conference on eXtreme
Programming and Agile Processes in Software Engimge(XP 2005), Lecture
Notes in Computer Science, Springer Verlag, 2005

[RPA08] Read, D., Properjohn, G., Going Agile- As8s5tudy19" Australian Software

Engineering Conference, 200erth, Australia

191



[RPT+08] Ricca, F., Penta, M., Torchiano, M., TdaeP., Ceccato, M., Visaggio, C.,
Are Fit Tables Really Talking? A Series of Experirtgeto Understand whether
Fit Tables are Useful during Evolution Tasks, Inagional Conference on
Software Engineering 2008, Leipzig, Germany, pd.-380

[RTD+08] Ricca, F., Torchiano, M., Di Penta, M.,dCato, M., Tonella, P., The user of
executable fit tables to support maint. and ewasks, Elect. Comm. of the
EASST, 8, 2008

[RTCTO7] Ricca, F., Torchiano, M., Ceccato, M., €ba, P., Talking tests: An
Empirical Assessment of the role of fit acceptatese in clarifying requirements,
IWPSE 2007, 51-58

[SO01] Schwaber, K., Beedle, M., Agile Software Diepenent with Scrum, Prentice Hall,
2001

[S02] Shaw, M., What Makes Good Research in So#viEargineering, International
Journal of Software Tools for Technology Transg&02, Vol. 4, No. 1, pp. 1-7

[S03] Steinberg, D., Using Instructor Written Actapce Tests Using the Fit Framework,
LNCS Vol. 2675, Springer-Verlag, pp. 378-385, 2003

[S04] Schwaber, KAgile Project Management with ScruMicrosoft Press, 2004

[SO7] Schwaber, KThe Enterprise and Scrurilicrosoft Press, 2007

[ShO7] Sharp, H., The role of physical artefactagiie software development team
collaboration2™ International Workshop on Physicalityancaster University,

UK, 2007

192



[S09] Schwaber, K., The Sprint Review: Mastering A1t of Feedback”,

www.scrumalliance.org/articles/124-the-sprint-revdimastering-the-art-of-

feedbackretrieved April 2011

[S10] Schmidt, J., Lyle, DLean Integration: An Integration Factory Approaah t
Business AgilityAddison-Wesley Professional, 2010

[S66] Sabidusi, G., The centrality index of a grapsychometrikayol. 31, pp. 581-603,
1966

[S87] Strauss,AQualitative Analysis for Social Scientis&ambridge, England:
Cambridge University Press, 1987

[SC98] Strauss, A., Corbin, Basics of Qualitative Research: Techngieus and
Procedures for Developing Grounded The@? ed. Thousand Oaks, Sage, 1998

[SC88] Siegel, S., Castellan, Mionparametric Statistics for the Behavioral Sciexn2g’
Ed. McGraw-Hill International Editions, 1988

[SKO7] Shuja, A., Krebs, JIBM Rational Unified Process Reference and Cedtfan
Guide: Solution DesignetBM Press, 2007

[SNO8] Sauve, J., Neto, O., Teaching Software Diuakent with ATDD and
EasyAccept, SIGCSE 2008, March 12-15, Portlandg@reUSA, pp. 542-546,
2008

[SNCO05] Sauve, J., Neto, O., Cirne W., EasyAccAptool to Easily Create, Run and
Drive Development with Automated Acceptance Te&&T’ 05, pp.111-117

[SP04] Stevenson, C., Pols, A., An Agile Approaciat_egacy Systen®roc. of the &
International Conference on Extreme Programm@Q4, LNCS 3092, pp. 123-

129

193



[SPO7] Saller, K., Penn, A., The Performance ofc8paExploring Social Spatial
Phenomena of Interaction Patterns in an Organizaticchitecture and
Phenomenology Conferendday 13-17, 2007, Haifa, Israel

[SRPO7] Sharp, H., Rogers, Y., Preecelnleraction Design: Beyond Human-Computer
Interaction,Wiley, 2007

[SRSFO06] Sharp, H., Robinson, H., Segal, J., Farids, The Role of Story Cards and
the Wall in XP teams: A Distributed Cognition Pezsfive Agile 2006,
Minneapolis, MN, USA, pp. 65-75

[SS97] Sommerville, 1., Sawyer, Requirements Engineering: A Good Practice Guide,
John Wiley & Sons, Chichester, England, 1997

[SSO05] Schwarz, C., Skytteren, S., Ovstetun, Ut;AT: An Eclipse Plugin for
Automatic Acceptance Testing of Web ApplicatioBPSLA2005, pp. 182-183

[St09] Stolberg, S., Enabling Agile Testing througbntinuous Integration, Agile 2009

[St95] StakeThe Art of Case Study ResearSGE Publications, 1995

[SO07] Sumrell, M., From Waterfall to Agile — How @®a QA Team Transition?, Agile
2007

[T11] Taylor, F.,The Principles of Scientific Managemetgrper & Brothers, New
York, 1911

[T79] Trivers, R., The Evolution of Reciprocal Altsm,Quaterly Review of Biology6,
1971, pp. 35-57

[TDO9] Talby, D., Dubinsky, Y., Government of an ikggSoftware Project, Proc. of the

2009 ICSE Workshop on Software Development Gover®aP009, pp. 40-45

194



[TKHDO6] Talby, D., Keren, A., Hazzan, O., Dubinsk¥., Agile Software Testing in a
Large-Scale ProjeclEEE Software, July/Augug006, pp. 30-37

[T98] Torvald, L., What Motivates Free Software B®wpers?First Monday,(3:3),
1998, http://firstmonday.org/issues/issue3_3/tatshdex.html

[WRH+00] Wohlin, C., Runeson, P., Host, M., Ohlssbh, Regnell, B., and Wesslen,
A., Experimentation in Software Engineering — An Introiion, Kluwer
Academic Publishers, 2000

[WO03] Wiegers, K. Software Requirements, Second EditMitrosoft Press, 2003

[WO04] Wurowski, J.,The Wisdom of CrowdRandom House, 2004

[W71] Winer, B.J. Statistical Principles in Experimental DesigcGraw-Hill, pg. 14,
1971

[Wa04] Watts, D., Six Degrees: The Science of areéoted Age, W.W. Norton & Co.,
2004

[WJIR90] Womack, J., Jones, D., Roos, The Machine that Changed the World
Rawson Associates, 1990

[WLO4] Watt, R., Leigh-Fellows, D., Acceptance Téstven PlanningLNCS, Vol.
3134,Springer-Verlag, pp. 43-49, 2004

[V11] Videosurf, www.videosurf.com

[YO3] Yin, R., Case Study Research: Design and i&tSage Publications, 2003

[Y94] Yin, R., Case Study Research: Deignh and Methods (SeconidfdBage
Publications, Thousand Oaks, CA, 1994

[YRGO9] Yague, A., Rodriguez, P. Garbajosa, J.,i@ging Agile Processes by Early

Identification of Hidden Requiremen$P 2009, LNBIP 31pp. 180-185

195



[ZW98] Zelkowitz, M., Wallace, D., Experimental Meld for Validating Technology,
IEEE Computer31(5), pp.23-31, 1998

[ZNO2] Zowghi, D., Nurmuliani, N., A study of thenpact of requirements volatility on
software project performance, In Proc of thefgia-Pacific Software
engineering Conference, Washington, DC, UEA&E Computer Societ2002

[ZN0O4] Zimmermann, T., Nagappan, N., Predictingedté$ using network analysis on
dependency graphs, Proc. of"3@ternational Conference on Software

Engineering, Leipzig, Germany, pp. 531-540, 2008

196



Appendix |: Ethics Approval

The following pages are intentionally left blankaocordance with the Faculty of

Graduate Studies regulations.

197



198



APPENDIX I1: COPYRIGHT RELEASE FORM
The following pages are intetionally left blankaocordance with the Faculty of

Graduate Studies regulations.

199



200



201



202



APPENDIX I11: INTERVIEW QUESTIONS
Interview Guide

Date/Time:

Purpose of the Study:

This research aims to determine how software reqments are specified in executable
specifications, discover the tool adoption proaess the benefits and problems that
people encounter with the existing executable daoep testing tools.

What Will | Be Asked To Do?

You will be asked about your experience with exablg acceptance testing tool in the
current or previous projects that you worked onuYill be asked about your role in the
project, how the team used the tool and why thewas chosen. The interview will take
about 30 minutes. The interview will be audio tapédur participation in this research is
voluntary. If at any time you feel uncomfortableuymay withdraw from the study — the
audio recordings will be discarded and any dathegatl from your participation
removed. Knowledge of your participation in thejpod will remain anonymous.

Questions
1. Tell me about the project that you were involveal tised Fit.
a. How did you get started on the project?
b. What is your role in the team?
c. At what point of the project did you get involved?
2. Tell me about the processes involved in introduérgcutable acceptance Test
Driven Development to your team
a. Who introduced executable acceptance testing in tgam?
b. How did you get the other team members involved?
c. What were the obstacles in introducing the togidor team?
d. Why did you choose to practice executable accepttest driven
development?
e. How did you overcome the adoption problems?
3. Who writes the specifications?
4. Tell me about how the tool works.s
a. Why did you choose this tool?
b. What kind of problems did you try to solve using?Fi
c. What were the problems/shortcomings with the tool?
5. Did you notice benefits to using Fit?

203



