
Developing Usable APIs with XP and Cognitive
Dimensions

Rahul Kamal Bhaskar, Craig Anslow, John Brosz, Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Canada

{rbhaskar, canslow, jbrosz, fmaurer}@ucalgary.ca

Abstract— Developing a usable Application Programming
Interface (API) is a complex and expensive task. Two major
factors play important roles on the usability of an API: the
design and resources (e.g. documentation, tutorials). API
Developers typically evaluate the usability of an API after
implementation that results in refactoring tasks if an API lacks
usability after development. This refactoring could be avoided if
evaluation were continuously conducted while development. This
paper explores a new combined process for building usable APIs
that combines concepts from a usability evaluation method
(Cognitive Dimensions Framework) and an Agile development
methodology (eXtreme Programming). We explored the
effectiveness of this combined process by implementing a web-
based API and conducting a user study. The findings from our
evaluation indicated that the new process helped in designing and
building a usable API, but ignored some concerns related to
resources.

Keywords— APIs, Cognitive Dimension Framework, Usability,
XP.

I. INTRODUCTION
The process of software development has evolved over the

time instead of implementing code from scratch, developers
reuse code or functionalities available through sets of routines,
and protocols called Application Programming Interfaces
(APIs) [1–3]. To reduce costs and effort to develop software,
developers often use APIs. Benefits of using an API are mostly
seen if an API make it easy for a developer to understand and
reuse its functions that indicates usability of an API [2]. An
aspect that plays a major role in the decision of whether an API
will be used is the usability of an API [4]. APIs can have
various usability issues that can be generated due to design,
resources, and technical constraints [2]. Designers can evaluate
the usability of an API through different methods such as API
peer review [5], API profile dimensions [6], Cognitive
Dimensions (CDs) Framework [7, 8], and text analysis [9].
Building an API gets more complex when requirements
continually evolve and there are time constraints [10]. Agile
methodologies accommodate changing requirements to build
software under time pressure with the help of effective
planning [10]. There are different Agile methodologies such as
eXtreme programming (XP) [11], [12] and Scrum [13].

 Literature suggests that the design decision and
development phase during software development is the most
appropriate phase to consider the usability of an API [14, 15].

This paper explores a development process devised by
combining a development process with an API usability
evaluation method which can help in building a usable API. As
a case study this development process was used to implement
an API to explore the impact on the development process. We
conducted a user study on the resulting API to examine its
usability and to understand contribution of the development
process in making the case study API usable.

II. RELATED WORK
An API should be the result of a good development

process, and every step in the process should offer the
opportunity for improvement [16]. The design and
development phase is the most appropriate phase to consider
the usability of an API [14, 15]. Zibran et al. pointed out that
“API designer and developers need a good understanding on
API usability and apply those usability concepts during design
and development phases, so that they can minimize the
maintenance difficulties caused by the usability issues
associated with such APIs” [17]. Design and evaluation are
tightly coupled with all stages of software design [15, 18].

Different research has pointed out that the usability
evaluation when made part of the development process can
lead to usable software [19–21]. CRUISER a development
process proposed by Memmel et al. [19], emphasizes an
increased involvement of stakeholders and developers by using
prototypes and scenarios. Mclnerney and Maurer showed that
User Centric Design and Agile methods can coexist and can
result in better UI design [22]. Singh proposed the U-SCRUM
methodology as a variant of SCRUM that can be used to
improve usability. U-SRUM suggests using two product
owners in order to improve usability (one for responsibility for
function implementation and other for usability). Ahmad et al.
proposed a process called Agile Usability software
Development Life Cycle to make interfaces more usable [21].

Our work is inspired from past research accomplished in
designing usable software by combing usability evaluation
aspects with the development process. We designed a
development process that combines usability methods with the
development process to design a usable API. In order to find an
appropriate development process and usability method which
when combined can result in a usable API, we explored
different issues that developers face during development of an
API. On exploring the literature we found the following issues
that were faced by developers: frequently changing

 978-1-5090-0252-8/16/$31.00 ©2016

requirements, issues related to source code such as easy to
learn, readable code, hard to misuse, easy to extend, naming
convention, design patterns, abstraction level [1, 16, 17, 23,
24], method placement (i.e. on which class or classes methods
are placed) and method calls [25]. These issues were analyzed
and used for searching a usability evaluation method and
development process, which can address these issues.

When searching for the development process, we explored
different Agile methodologies and found that XP is appropriate
when requirements changes frequently [11, 12]. XP also
emphasize more on the development practices (e.g. refactoring,
unit test, test driven development, continuous integration)
which helps in organizing development work [11].

When searching for an evaluation process, which can
address a wide variety of issues, we found that the Cognitive
Dimensions (CDs) framework is appropriate. Previous research
shows that CDs has been successfully used in the past to
evaluate different software [7] and APIs [4, 5, 8, 26]. The CDs
has multiple dimensions that can be used to evaluate different
usability issues of an API [27]. The dimensions can also be
used as shared vocabulary to generalize results of the usability
evaluation, so that other developers can use findings from other
studies to develop their own API [28]. This paper describes a
development process that combines a subset of XP practices
with the CDs framework to build a usable API. In the
remainder of this paper, “API-designer” represents the
programmer who developed the API, “API-user” for the
developers who use the API and “end user” for the person who
uses the application based on the API.

III. DEVELOPMENT PROCESS: XP + CDS
We designed a development process (Figure 1) by

combining a subset of XP practices (e.g. incremental planning,
release and iteration planning, user stories, short iteration,
refactoring and unit tests) with the CDs framework.

In XP + CDs, all dimensions of the CDs framework are
applied to the output of each phase of the development process
to evaluate usability in the different phases for each iteration
(design, implementation, testing, and evaluation). There is no
check of usability during requirements phase, as there are no
decisions regarding the design of an API architecture nor is any
coding taken place during this phase. Usability evaluation in
every phase of development ensures the API-designer that the
chosen design decisions thus far will have limited number of
usability issues. This approach will help in addressing usability
issues when it is generated and avoid future unwanted
consequences due to usability issues. This will likely result in a
more usable API at the time of release. The CDs framework
does not specify which dimensions can be used for the
evaluation for certain outcomes (e.g. function name, signature
or abstraction level) of the development process. Therefore, we
decided to apply all the dimensions during all the phases of
development so that usability issues can be discovered and find
which dimensions are appropriate for which phase.

XP + CDs is made up of seven phases. The first phase,
Brainstorming, where the API stakeholders make decisions
regarding the API ideas and the features. In Iteration 0 the
API-designer creates user stories, performs release planning,

decides and prepares the development environment (such as
programming languages and IDE) and other setup work if
required, such as licensing development tool. The next step is
the Iteration Cycle that is made up of several software
development phases. The Requirements and Planning phase
is used for planning each iteration (i.e. selecting user stories
and breaking each user story into smaller tasks [12]), creating
or updating user stories as new requirements are obtained. In
the Design phase, the API architecture is created (such as
classes, functions, function signatures, names, contents of
functions and classes), and resources (e.g., function
descriptions, and code snippets). Furthermore in the design
phase, the outcome of this phase (i.e. names of functions and
classes, content of function and classes, resources) are
evaluated using the CDs to find usability issues. Through the
Development phase the API-designer writes code based on the
design, unit tests, and prepares documentation. Furthermore the
outputs of this phase, source code and documentation, is
evaluated using all of the CDs to detect usability issues. In
Testing scenarios are created based on the tasks that an API-
user might want to accomplish that was implemented in this
phase. These scenarios help the API-designer to perform
acceptance testing and evaluate the API from the API-user
perspective. These scenarios are also evaluated against all
dimensions of the CDs. This cycle repeats for each iteration
until all features are implemented and usability issues are
addressed. In the Release phase, API-designer makes the API
available for use.

IV. GIST-API
To demonstrate that XP + CDs is helpful in building a

usable API, designed a case study API, the GIST-API, using
this process. The GIST-API is a web-based visualization API
that implements advanced graphics techniques for transforming
graphical images on the fly (transmogrification [29]) for web-
based geospatial applications.

Figure 1 XP + CDs – Combined development process, combining the
XP and CDs frameworks.

A. Demo and Application Interface
The end-user of the application can compare two routes and
determine which one is longer. The end-user clicks the create
shape button which creates the green highlighted region (i.e. A
in Figure 2.) by moving the mouse cursor on the web page.
These green highlighted regions are the input shapes for
transmogrification. After this the end-user clicks the transform
button, which generates the transformed image (i.e. A’ in
Figure 2.) to represent selected road route of arbitrary
geometry into the rectangular geometry. The end-user repeats
the tasks accomplished for the other road route (i.e. B in
Figure 2.), which generates another transformed image (i.e. B’
in Figure 2.). Now the end-user can move the transformed
images side-by-side and check the length of the rectangles (A’
and B’). Finally, by visually comparing the length of the
rectangle shapes the end-user can answer that A’ (i.e. path A)
was longer than B’ (i.e. path B). The end-user can repeatedly
perform these steps to compare multiple routes.

B. Impact of the development process on GIST-API design
This section presents observations from the case study on

the development process designed by combining a subset of
XP practices with CDs. During the case study, even though all
the CDs were applied on each phase, it was observed that not
all the CDs have an impact on the GIST-API’s design.

In the design phase, it was noticed that the CDs had a
significant impact on the different elements of the API’s
architecture such as the class organization, naming methods,
and deciding the amount of tasks that can be accomplished
using a particular function. For example, the name of the
function was verified in the case study using three CDs (i.e.
consistency, role expressiveness, and domain
correspondence). Role expressiveness helped in checking
that the “particular” selected name for the function
expectations was derived from the function name. Domain
Correspondence helped in showing how clear function names
map to the domain such as the “Transmogrifer()” function
which represents the transmogrification technique. Function
signatures were validated using the consistency dimensions.
Consistency helped in checking that the implementation was
coherent throughout the development phase. Furthermore, it
was also noticed that the abstraction level and working step
unit impacted the API design as this helped in checking the

goal that can be achieved by the use of a function from the
API. Finally, in this phase working framework helped in
deciding classes and the functions.

For the development phase it was observed that all of the
CDs had a significant impact on the overall design of the
GIST-API and documentation. While building the GIST-API
using the development process it was observed that three CDs
(consistency, role expressiveness, and domain
correspondence) were used more often than other dimensions
(e.g. premature evaluation was only used once during the
development phase). During this phase the CDs helped in
finding possible usability issues, and reduced the potential
refactoring that could have generated after the development
due to the issues such as, function names, class organization
and missing documentation, which was avoided. A few
improvements were found while applying progressive
evaluation. During this phase, the premature commitment
dimension can also be verified but in the GIST-API there was
no situation where an API-user has to make any assumptions in
the GIST-API while implementing any feature.

The testing phase is the last phase of the iteration cycle.
During this phase, it was found that the API design and
documentation could be validated using the four CDs (i.e.
learning style, penetrability, API elaboration, and API
viscosity). For example, while evaluating the function input
parameter the API elaboration dimension helped in validating
whether documentation had sufficient descriptions or not.

The subset of the XP practices not only helped in
accommodating change but also helped in organizing the
development process. Iteration and release planning helped in
defining priorities of the user stories. Short iterations made the
development process fast and productive. User stories helped
in designing features from customer perspective. Refactoring
helped in improving the design on a continuous basis. Unit
testing helped verify that the code is working as expected.

V. USER STUDY
We conducted a user study to investigate the perceived

effectiveness and usability of the GIST-API. Before
conducting the user study a pilot study was conducted to
identify major usability issues and to test the study protocol.
Based on the pilot study we improved the GIST-API design
and improved the resources (i.e. documentation, code snippets,
and videos). For the main user study we recruited 16
participants (referred to as P1-P16), all of whom were
Computer Science graduate students from the University of
Calgary. All the participants were offered an honorarium of
CAD $15 for participating in the study. The study had four
steps: pre-study questionnaire, training, programming, and
post-study questionnaire. During the pre-study questionnaire
the participant’s demographics were collected. Training
involved a video introducing the transmogrification concept
and showing demo code illustrating how to develop a prototype
with the API. In the programming tasks research step,
participants were asked to complete programming tasks using
the GIST-API. The post-study questionnaire step collected
participants’ feedback regarding the usability of the API and
suggestions on how to improve the usability.

Figure 2. An application created with the GIST-API. In this screenshot
(A and B) has been transformed into two easily comparable rectangles

(A’ and B’) allowing a viewer to easily see which path is longer.

The study data was processed and transcribed manually
(i.e. listening to recorded interviews) and we created a
summary of the activities, comments and suggestions observed
during the study. Table 1 was created from the analyzed
activities, which has categories, codes, and the participants.

API Design: It was observed that 12 participants
mentioned easy to use function as they did not face problems in
understanding the function names and tasks they were
performing. Five participants mentioned function names are
self-documenting name (i.e. names are sufficient description
about the task that function performs). Figure 3. shows the
responses from the questionnaire, where 14 participants
perceived that the GIST-API has good naming conventions.
Four participants preferred keyword search in the function list.
The keywords were the words that the API-users can think of
regarding the function they wanted to use. For example, an
API-user was looking for a feature in the API that deals with
colour and the keyword will be “colour”. The findings suggests
that the naming conventions based on the domain and role,
ease the API understanding. As these types of function names
helped the participants during the study in locating a function
in the documentation by searching for the keywords. Based on
the findings from the study no conclusion can be made
grouping functions into classes helped API-users or not. Except
P4 none of the participants made any comments on the classes.

Role of knowledge: Transmogrification was a new concept
for all the participants, seven participants explicitly mentioned
that the lack of domain knowledge slowed their progress during
the beginning of the study. According to these participants it
took time for them to get used to the transmogrification
concept. Only one participant (i.e. P15) commented that
previous programming language knowledge (i.e. JavaScript,
and GIS) helped in learning the API syntax. The study findings
implied that domain knowledge could play an important role in
reducing the learning time required by the API-users.

API Debugging: Error messages were added in the GIST-
API to help the API-users in debugging errors. According to
the participants, the error message was self-sufficient for
debugging errors (i.e. documentation was not required to be
checked by the participants for suggestions to solve the bug).
P4 commented, “Debugging isn’t straightforward, as
JavaScript code runs even if the code has an error, but this

error message helped me finding errors.” According to P4, the
error messages helped in locating mistakes made while using
the API. P10 and P16 suggested to show line numbers where
an error is generated. P6, P7, and P9 liked showing of error.
The findings of the study suggest that adding error messages
makes debugging easy as error can be traced and corrected.

VI. DISCUSSION
Objective of the study was to explore usability of the GIST-

API which helps in understanding whether XP + CDs can help
in designing usable API. During the study data analysis, we did
not find usability issues in the GIST-API design. The study
findings demonstrated that participants were satisfied with the
API. Participants found that the resources and the content were
helpful, but not all resources resulted from the development
process. Few of the resources were implemented after
receiving feedback from the pilot study (such as function list,
flow chart, jargon descriptions). The study findings suggests
that the development process resulted into a usable API design
but was not able to address all concerns around the resources.
Furthermore, the study findings also indicate that conducting a
user study to gather API-users perceptions can help in
designing useful resources for APIs.

Designing a usable API is complex and time consuming
[30], there are different API evaluation approaches that can be
used to evaluate usability of the API. In general most of the
approaches to evaluate an API are applied once an API is
developed. This paper presented a development process
designed by combining a development process with an
evaluation technique. To help the API-developer to address
different difficulties faced while designing a usable API such
as requirements uncertainty, time pressure to deliver an API
and different usability issues [2]. In order to address these
difficulties we created a development process (XP + CDs) by
combining a subset of XP practices (i.e. incremental designing,
release and iteration planning, user stories, short iteration,
refactoring, unit tests, and acceptance testing) with the
Cognitive Dimensions (CDs) framework (an evaluation
process) to design a usable API. Furthermore we developed the
GIST-API using the development process and conducted a user
study to evaluate the API usability in order to determine the
effectiveness of the development process in designing a usable
API. The findings from the user study suggests that the
combined process helped in making the API design usable but
not able to address all the concerns for the resources.

ACKNOWLEDGMENTS
This research was funded by a NSERC SurfNet Project Grant
and a Mitacs Accelerate Postdoctoral Fellowship.

Figure 3. Participants' responses regarding API Design
and resource usability aspects.

Table 1. Data Analysis Table for the main user study.
Categories Codes Participants

API Design

Easy to use function P1 – P7, P9, P10, P13,
P15, P16

Self-Documenting name P1, P3, P10, P13, P15
Keyword search P2, P6, P9, P14
Lack intuitiveness P2, P10, P11
Few top level variables P4

Role of
Knowledge

Programing language
knowledge helped P15

Lack domain knowledge P5, P6, P8- P10, P14, P15

API
Debugging

Error message description
is self-sufficient for
solving the error

P1-P6, P8, P10, P13-P16

Line number for error
would be helpful P10, P13, P15, P16

Bug hindered usability P6, P7

REFERENCES
[1] D. Dig and R. Johnson, “How do APIs evolve? A story of

refactoring,” J. Softw. Maint. Evol., vol. 18, no. 2, pp. 83–107,
2006.

[2] M. Robillard, “What makes APIs hard to learn? answers from
developers,” IEEE Softw., vol. 26, no. 6, pp. 27–34, 2009.

[3] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi, “Building
more usable APIs,” IEEE Softw., vol. 15, no. 3, pp. 78–86, 1998.

[4] J. Stylos, S. Clarke, and B. Myers, “Comparing API design choices
with usability studies: A case study and future directions,” in
Proceedings of the 18th Workshop of the Psychology of
Programming Interest Group (PPIG), 2006, pp. 131 – 139.

[5] U. Farooq, L. Welicki, and D. Zirkler, “API Usability peer reviews:
a method for evaluating usability of application programming
interfaces,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), 2010, pp. 2327–2336.

[6] C. Bore and S. Bore, “Profiling software API usability for consumer
electronics,” in Proceedings of International Conference on
Consumer Electronics, (ICCE) Digest of Technical Papers, 2005,
vol. 1, pp. 155–156.

[7] T. R. G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework,” J. Vis. Lang. Comput., vol. 7, no. 2, pp. 131–174,
1996.

[8] S. Clarke, “Describing and measuring API usability with the
cognitive dimensions,” in Proceedings of the 10th Anniversary
Workshop Cognitive Dimensions of Notations, 2005.

[9] R. B. Watson, “Improving software API usability through text
analysis: A case study,” in Proceedings of IEEE International
Professional Communication Conference, (IPCC), 2009, pp. 1–7.

[10] M. Huo, J. Verner, L. Zhu, and M. a Babar, “Software quality and
agile methods,” in Proceedings of the Computer Software and
Applications Conference, COMPSAC, 2004, pp. 520–525.

[11] K. Beck, Extreme programming eXplained : embrace change.
Reading, MA: Addison-Wesley, 2000.

[12] K. Beck and M. Fowler, Planning extreme programming, Edition 1.
Boston: Addison-Wesley Professional;, 2001.

[13] J. Highsmith and A. Cockburn, “Agile software development: the
business of innovation,” Computer (Long. Beach. Calif)., vol. 34,
no. 9, pp. 120–122, 2001.

[14] M. F. Zibran, “What Makes APIs Difficult to Use?,” Int. J. Comput.
Sci. Netw. Secur., vol. 8, no. 4, pp. 255–261, 2008.

[15] E. Folmer and J. Bosch, “Architecting for usability: A survey,” J.
Syst. Softw., vol. 70, no. 1–2, pp. 61–78, 2004.

[16] J. Blanchette, “The Little Manual of API Design,” Trolltech, Nokia,

2008.

[17] M. Zibran, F. Eishita, and C. Roy, “Useful, but usable? Factors
affecting the usability of APIs,” in Proceedings - Working
Conference on Reverse Engineering, WCRE, 2011, pp. 151–155.

[18] D. Rowley and D. Rhoades, “The cognitive jogthrough: a fast-paced
user interface evaluation procedure,” in Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI), 1992,
pp. 389–395.

[19] T. Memmel, F. Gundelsweiler, and H. Reiterer, “CRUISER: A
Cross-Discipline User Interface and Software Engineering
Lifecycle,” Human-Computer Interact. Interact. Des. Usability, pp.
174–183, 2007.

[20] M. Singh, “U-SCRUM: An agile methodology for promoting
usability,” in Proceedings of IEEE Agile Conference, 2008, pp.
555–560.

[21] W. Ahmad, S. Butt, and L. Rahim, “Usability Evaluation of the
Agile Software Process,” Adv. Vis. Informatics Springer, pp. 640–
651, 2013.

[22] P. McInerney and F. Maurer, “UCD in agile projects,” Interactions,
vol. 12, no. 6, pp. 19–23, 2005.

[23] M. Robillard and R. Deline, “A field study of API learning
obstacles,” Empir. Softw. Eng. Springer, vol. 16, no. 6, pp. 703–
732, 2011.

[24] M. Henning, “API Design Matters,” ACM QUEUE, no. June, pp.
25–36, 2007.

[25] K. Bierhoff, N. Beckman, and J. Aldrich, “Practical API protocol
checking with access permissions,” Proceeding Eur. Conf. Object-
Oriented Program., pp. 1–25, 2009.

[26] R. Watson, “Applying the Cognitive Dimensions of API Usability
to Improve API Documentation Planning,” in Proceedings of the
32nd ACM International Conference on The Design of
Communication CD-ROM, 2014, pp. 2–3.

[27] S. Clarke, “Measuring API Usability,” Dr. Dobb’s J. Wind. Suppl.,
vol. 10, no. 1, pp. S6–S9, 2004.

[28] S. Clarke and C. Becker, “Using the Cognitive Dimensions
Framework to evaluate the usability of a class library,” in
Proceedings of the First Joint Conference of EASE and PPIG, 2003,
no. April, pp. 359–366.

[29] J. Brosz, M. a. Nacenta, R. Pusch, S. Carpendale, and C. Hurter,
“Transmogrification: casual manipulation of visualizations,” Proc.
26th Annu. ACM Symp. User interface Softw. Technol. - UIST ’13,
pp. 97–106, 2013.

[30] C. De Souza and D. L. M. Bentolila, “Automatic evaluation of API
usability using complexity metrics and visualizations,” in
Proceedings of International Conference on Software Engineering,
(ICSE), 2009, pp. 299–302.

